




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
合肥琥珀中学中考数学期末几何综合压轴题易错汇编一、中考数学几何综合压轴题1.问题背景:已知的顶点在的边所在直线上(不与,重合).交所在直线于点,交所在直线于点.记的面积为,的面积为.(1)初步尝试:如图①,当是等边三角形,,,且,时,则;(2)类比探究:在(1)的条件下,先将点沿平移,使,再将绕点旋转至如图②所示位置,求的值;(3)延伸拓展:当是等腰三角形时,设.(I)如图③,当点在线段上运动时,设,,求的表达式(结果用,和的三角函数表示).(II)如图④,当点在的延长线上运动时,设,,直接写出的表达式,不必写出解答过程.解析:(1)12;(2)12;(3)(ab)2sin2α.(ab)2sin2α.【解析】试题分析:(1)首先证明△ADM,△BDN都是等边三角形,可得S1=•22=,S2=•(4)2=4,由此即可解决问题;(2)如图2中,设AM=x,BN=y.首先证明△AMD∽△BDN,可得,推出,推出xy=8,由S1=•AD•AM•sin60°=x,S2=DB•sin60°=y,可得S1•S2=x•y=xy=12;(3)Ⅰ如图3中,设AM=x,BN=y,同法可证△AMD∽△BDN,可得xy=ab,由S1=•AD•AM•sinα=axsinα,S2=DB•BN•sinα=bysinα,可得S1•S2=(ab)2sin2α.(Ⅱ)结论不变,证明方法类似;试题解析:(1)如图1中,∵△ABC是等边三角形,∴AB=CB=AC=6,∠A=∠B=60°,∵DE∥BC,∠EDF=60°,∴∠BND=∠EDF=60°,∴∠BDN=∠ADM=60°,∴△ADM,△BDN都是等边三角形,∴S1=•22=,S2=•(4)2=4,∴S1•S2=12,(2)如图2中,设AM=x,BN=y.∵∠MDB=∠MDN+∠NDB=∠A+∠AMD,∠MDN=∠A,∴∠AMD=∠NDB,∵∠A=∠B,∴△AMD∽△BDN,∴,∴,∴xy=8,∵S1=•AD•AM•sin60°=x,S2=DB•sin60°=y,∴S1•S2=x•y=xy=12.(3)Ⅰ如图3中,设AM=x,BN=y,同法可证△AMD∽△BDN,可得xy=ab,∵S1=•AD•AM•sinα=axsinα,S2=DB•BN•sinα=bysinα,∴S1•S2=(ab)2sin2α.Ⅱ如图4中,设AM=x,BN=y,同法可证△AMD∽△BDN,可得xy=ab,∵S1=•AD•AM•sinα=axsinα,S2=DB•BN•sinα=bysinα,∴S1•S2=(ab)2sin2α.考点:几何变换综合题.2.在中,点D,E分别是边上的点,.基础理解:(1)如图1,若,求的值;证明与拓展:(2)如图2,将绕点A逆时针旋转a度,得到,连接;①求证:;②如图3,若在旋转的过程中,点恰好落在上时,连接,则的面积为________.解析:(1);(2)①见详解;②13.44【分析】(1)利用平行线分线段定理,直接求解即可;、(2)①先推出,从而得,进而即可得到结论;②先推出AE=AE1=8,DE=D1E1=10,过点A作AM⊥DE于点M,则DM=3.6,D1E=2.8,再证明∠D1EE1=90°,进而即可求解.【详解】解:(1)∵,,∴=;(2)①∵将绕点A逆时针旋转a度,得到,∴=AD,=AE,∠BAD1=∠CAE1,∵,∴,即,∴,∴,∴;②由①可知,∴,∵将绕点A逆时针旋转,得到,点恰好落在上,∴AD1=AD=6,∠D1AE1=∠DAE=90°,∴AE=AE1=AD1=8,DE=D1E1=,过点A作AM⊥DE于点M,则DM=D1M=AD×cos∠ADE=AD×=6×=3.6,∴D1E=10-3.6×2=2.8,∵∠D1AE1=∠DAE=90°,∴∠DAD1=∠EAE1,又∵AD1=AD,AE=AE1,∴∠ADE=,∴∠AED+=∠AED+∠ADE=90°,即:∠D1EE1=90°,∴,∴的面积=D1E∙EE1=×2.8×9.6=13.44.故答案是:13.44.【点睛】本题主要考查相似三角形的判定和性质,解直角三角形,勾股定理,平行线分线段成比例定理,旋转的性质,熟练掌握相似三角形的判定和性质,是解题的关键.3.平面上,矩形ABCD与直径为QP的半圆K如图摆放,分别延长DA和QP交于点O,且∠BOQ=60°,OQ=OD=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向形如旋转,设旋转角为α(0°≤α≤60°).发现(1)当α=0°,即初始位置时,点P____直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B?(2)在OQ旋转过程中.简要说明α是多少时,点P,A间的距离最小?并指出这个最小值:(3)如图,当点P恰好落在BC边上时.求α及S阴影.拓展如图.当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.探究当半圆K与矩形ABCD的边相切时,求sinα的值.解析:发现:(1)在,15°;(2)当α=60°时,最小距离为1;(3)30°,.拓展:x的范围是;探究:sinα的值为或或.【详解】解:发现(1)在;当OQ过点B时,在Rt△OAB中,AO=AB,得∠DOQ=∠ABO=45°,∴α=60°-45°=15°.(2)如图3.连AP,有OA+AP≥OP,当OP过点A,即α=60°时等号成立.∴AP≥OP-OA=2-1=1.∴当α=60°时.P,A间的距离最小.∴PA的最小值为1.(3)如图3,设半圆K与PC交点为R,连接RK,过点P作PH⊥AD于点H,过点R作RE⊥KQ于点E.在Rt△OPH中,PH=AB=1,OP=2,∴∠POH=30°,∴α=60°-30°=30°.由AD//BC知,∠RPQ=∠POH=30°.∴∠RKQ=2×30°=60°.,在Rt△RKE中,,,;拓展如图5,∠OAN=∠MBN=90°,∠ANO=∠BNM,所以△AON∽△BMN.∴,即,∴.如图4,当点Q落在BC上时,x取最大值,作QF⊥AD于点F..∴x的范围是.【注:如果考生答“或”均不扣分】探究半圆与矩形相切,分三种情况:①如图5,半圆K与BC切于点T,设直线KT与AD和OQ的初始位置所在直线分别交于S,O′,则∠KSO=∠KTB=90°,作KG⊥OO′于点G.Rt△OSK中,.Rt△OSO′中,,.Rt△KGO′中,∠O′=30°,KG=Rt△OGK中,②半圆K与AD切于点T,如图6,同理可得.③当半圆K与CD相切时,成Q与点D重合,且为切点.∴α=60°,∴.综上述,sinα的值为或或.考点:圆,直线与圆的位置关系,锐角三角函数,相似,三角形法则求最值4.如图,分别为中上的动点(点除外),连接交于点P,.我们约定:线段所对的,称为线段的张角.情景发现(1)已知三角形是等边三角形,,①求线段的张角的度数;②求点P到的最大距离;③若点P的运动路线的长度称为点P的路径长,求点P的路径长.拓展探究(2)在(1)中,已知是圆P的外切三角形,若点的运动路线的长度称为点的路径长,试探究点的路径长与点P的路径长之间有何关系?请通过计算说明.解析:(1)①120°,②点P到的最大距离,③;(2)点的路径长与点P的路径长的比值是2:1(或点的路径长是点P的路径长的2倍).【分析】(1)①利用等边三角形的性质证△AEB与△BCF全等,得到∠EBA=∠BCF,利用三角形的内角和定理即可求出∠CPB的度数;②由题意可知当PO⊥BC于点N时,点P到BC的距离最大,根据垂径定理及三角函数即可求出点P到BC的最大距离;③由题意知点P的路径长为弧BC的长,在②的基础上直接利用公式即可求出结果;(2)由题意可知张角∠CPB的度数始终为120°,可得∠CBP+∠BCP=60°,因为圆P是△A'BC的内切圆,由此可推出A'是等边三角形ABC外接圆上优弧BAC上的一动点,其半径为2,圆心角240°,根据弧长公式可直接求出其长度,并计算出点A'的路径长是点P的路径长的2倍.【详解】解:(1)①∵是等边三角形,∴,∵,∴,∴.∵,∴,.②(2)如图所示,由于始终为,故过点作圆O,∴.当于点N时,点P到的距离最大.∵,∴,∴,∴点P到的最大距离.③由②可知点P的路径为的长度,即(2)点的路径长与点P的路径长的比值是(或点的路径长是点P的路径长的2倍),理由:由(1)中题意可知张角的度数始终为,可得,又因为圆P是的内切圆,所以,所以,所以是等边三角形外接圆上优弧上的一动点,由题意可得等边三角形外接圆的半径为,点的路径是优弧的长度,即以的圆心角,半径为的弧长,如图,所以点的路径长=,点的路径长与点P的路径长的比值是:,所以点的路径长与点P的路径长的比值是2:1(或点的路径长是点P的路径长的2倍).【点睛】本题考查了等边三角形的性质,圆的有关性质,弧长公式等,解题的关键是能够根据题意画出图形.5.(问题情境)如图1,点E是平行四边形ABCD的边AD上一点,连接BE、CE.求证:S平行四边形ABCD.(说明:S表示面积)请以“问题情境”为基础,继续下面的探究(探究应用1)如图2,以平行四边形ABCD的边AD为直径作⊙O,⊙O与BC边相切于点H,与BD相交于点M.若AD=6,BD=y,AM=x,试求y与x之间的函数关系式.(探究应用2)如图3,在图1的基础上,点F在CD上,连接AF、BF,AF与CE相交于点G,若AF=CE,求证:BG平分∠AGC.(迁移拓展)如图4,平行四边形ABCD中,AB:BC=4:3,∠ABC=120°,E是AB的中点,F在BC上,且BF:FC=2:1,过D分别作DG⊥AF于G,DH⊥CE于H,请直接写出DG:DH的值.解析:【问题情境】见解析;【探究应用1】;【探究应用2】见解析;【迁移拓展】.【分析】(1)作EF⊥BC于F,则S△BCE=BC×EF,S平行四边形ABCD=BC×EF,即可得出结论;(2)连接OH,由切线的性质得出OH⊥BC,OH=AD=3,求出平行四边形ABCD的面积=AD×OH=18,由圆周角定理得出AM⊥BD,得出△ABD的面积=BD×AM=平行四边形的面积=9,即可得出结果;(3)作BM⊥AF于M,BN⊥CE于N,同图1得:△ABF的面积=△BCE的面积=平行四边形ABCD的面积,得出AF×BM=CE×BN,证出BM=BN,即可得出BG平分∠AGC.(4)作AP⊥BC于P,EQ⊥BC于Q,由平行四边形的性质得出∠ABP=60°,得出∠BAP=30°,设AB=4x,则BC=3x,由直角三角形的性质得出BP=AB=2x,BQ=BE,AP=BP=2x,由已知得出BE=2x,BF=2x,得出BQ=x,EQ=x,PF=4x,QF=3x,QC=4x,由勾股定理求出AF==2x,CE==x,连接DF、DE,由三角形的面积关系得出AF×DG=CE×DH,即可得出结果.【详解】(1)证明:作EF⊥BC于F,如图1所示:则S△BCE=BC×EF,S平行四边形ABCD=BC×EF,∴.(2)解:连接OH,如图2所示:∵⊙O与BC边相切于点H,∴OH⊥BC,OH=AD=3,∴平行四边形ABCD的面积=AD×OH=6×3=18,∵AD是⊙O的直径,∴∠AMD=90°,∴AM⊥BD,∴△ABD的面积=BD×AM=平行四边形的面积=9,即xy=9,∴y与x之间的函数关系式y=;(3)证明:作BM⊥AF于M,BN⊥CE于N,如图3所示:同图1得:△ABF的面积=△BCE的面积=平行四边形ABCD的面积,∴AF×BM=CE×BN,∵AF=CE,∴BM=BN,∴BG平分∠AGC.(4)解:作AP⊥BC于P,EQ⊥BC于Q,如图4所示:∵平行四边形ABCD中,AB:BC=4:3,∠ABC=120°,∴∠ABP=60°,∴∠BAP=30°,设AB=4x,则BC=3x,∴BP=AB=2x,BQ=BE,AP=BP=2x,∵E是AB的中点,F在BC上,且BF:FC=2:1,∴BE=2x,BF=2x,∴BQ=x,∴EQ=x,PF=4x,QF=3x,QC=4x,由勾股定理得:AF==2x,CE==x,连接DF、DE,则△CDE的面积=△ADF的面积=平行四边形ABCD的面积,∴AF×DG=CE×DH,∴DG:DH=CE:AF=.【点睛】本题是圆的综合题目,考查了圆周角定理、平行四边形的性质、三角形面积公式、含30°角的直角三角形的性质、勾股定理、角平分线的判定等知识;本题综合性强,需要添加辅助线,熟练掌握平行四边形的性质和勾股定理是解题的关键.6.如图,已知和均为等腰三角形,,,将这两个三角形放置在一起.(1)问题发现如图①,当时,点、、在同一直线上,连接,则的度数为__________,线段、、之间的数量关系是__________;(2)拓展探究如图②,当时,点、、在同一直线上,连接.请判断的度数及线段、、之间的数量关系,并说明理由;(3)解决问题如图③,,,,连接、,在绕点旋转的过程中,当时,请直接写出的长解析:(1);(2);(3)或.【分析】(1)证明△ACE≌△ABD,得出CE=AD,∠AEC=∠ADB,即可得出结论;(2)证明△ACE∽△ABD,得出∠AEC=∠ADB,,即可得出结论;(3)先判断出,再求出,①当点E在点D上方时,先判断出四边形APDE是矩形,求出AP=DP=AE=2,再根据勾股定理求出,BP=6,得出BD=4;②当点E在点D下方时,同①的方法得,AP=DP=AE=1,BP=4,进而得出BD=BP+DP=8,即可得出结论.【详解】(1)在△ABC为等腰三角形,AC=BC,∠ACB=60°,∴△ABC是等边三角形,∴AC=AB,∠CAB=60°,同理:AE=AD,∠ADE=∠EAD=60°,∴∠EAD=∠CAB,∴∠EAC=∠DAB,∴△ACE≌△ABD(SAS),∴CE=AD,∠AEC=∠ADB,∵点B、D、E在同一直线上,∴∠ADB=180°-∠ADE=120°,∴∠AEC=120°,∴∵DE=AE,∴BE=DE+BD=AE+CE,故答案为60°,BE=AE+CE;(2).理由如下:和均为等腰三角形,,,,,,点、、在同一直线上,,.;(3)由(2)知,△ACE∽△ABD,∴,在Rt△ABC中,,∴;①当点E在点D上方时,如图③,过点A作AP⊥BD交BD的延长线于P,∵DE⊥BD,∴∠PDE=∠AED=∠APD,∴四边形APDE是矩形,∵AE=DE,∴矩形APDE是正方形,∴AP=DP=AE=2,在Rt△APB中,根据勾股定理得,∴BD=BP-AP=4,∴;②当点E在点D下方时,如图④,同①的方法得,AP=DP=AE=2,BP=4,∴BD=BP+DP=8,∴,即:CE的长为或.【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,等边三角形的性质,判断出△ACE∽△ABD是解本题的关键.7.问题探究(1)如图1,△ABC和△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,点B,D,E在同一直线上,连接AD,BD.①请探究AD与BD之间的位置关系:________;②若AC=BC=,DC=CE=,则线段AD的长为________;拓展延伸(2)如图2,△ABC和△DEC均为直角三角形,∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.将△DCE绕点C在平面内顺时针旋转,设旋转角∠BCD为α(0°≤α<360°),作直线BD,连接AD,当点B,D,E在同一直线上时,画出图形,并求线段AD的长.解析:(1)①垂直,②4;(2)作图见解析,或【分析】(1)①由“SAS”可证△ACD≌△BCE,可得∠ADC=∠BEC=45°,可得AD⊥BD;②过点C作CF⊥AD于点F,由勾股定理可求DF,CF,AF的长,即可求AD的长;(2)分点D在BC左侧和BC右侧两种情况讨论,根据勾股定理和相似三角形的性质可求解.【详解】解:(1)∵△ABC和△DEC均为等腰直角三角形,∴AC=BC,CE=CD,∠ABC=∠DEC=45°=∠CDE∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,且AC=BC,CE=CD∴△ACD≌△BCE(SAS)∴∠ADC=∠BEC=45°∴∠ADE=∠ADC+∠CDE=90°∴AD⊥BD故答案为:垂直②如图,过点C作CF⊥AD于点F,∵∠ADC=45°,CF⊥AD,CD=∴DF=CF=1∴∴AD=AF+DF=4故答案为:4.(2)①如图:∵∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1,∴AB=2,DE=2,∠ACD=∠BCE,.∴△ACD∽△BCE.∴∠ADC=∠E,.又∵∠CDE+∠E=90°,∴∠ADC+∠CDE=90°,即∠ADE=90°.∴AD⊥BE.设BE=x,则AD=x.在Rt△ABD中,,即.解得(负值舍去).∴AD=.②如图,同①设BE=x,则AD=x.在Rt△ABD中,,即.解得(负值舍去).∴AD=.综上可得,线段AD的长为【点睛】本题是几何变换综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,等腰三角形的性质等知识点,关键是添加恰当辅助线.8.在中,,过点作直线,将绕点C顺时针旋转得到(点的对应点分别是),射线分别交直线于点.(1)问题发现:如图1所示,若与重合,则的度数为_________________(2)类比探究:如图2,所示,设与的交点为M,当M为中点时,求线段的长;(3)拓展延伸:在旋转过程中,当点分别在的延长线上时,试探究四边形的面积是否存在最小值,若存在,直接写出四边形的最小面积;若不存在,请说明理由解析:(1)60°;(2);(3)存在,【分析】(1)由旋转可得:AC=A'C=2,进而得到BC=,依据∠A'BC=90°,可得cos∠A'CB=,即可得到∠A'CB=30°,∠ACA'=60°;(2)根据M为A'B'的中点,即可得出∠A=∠A'CM,进而得到PB=,依据tan∠BQC=tan∠A=,即可得到BQ=BC×=2,进而得出PQ=PB+BQ=;(3)依据S四边形PA'B′Q=S△PCQ-S△A'CB'=S△PCQ-,即可得到S四边形PA'B′Q最小,即S△PCQ最小,而S△PCQ=PQ×BC=PQ,利用几何法或代数法即可得到S△PCQ的最小值=3,S四边形PA'B′Q=3-.【详解】解(1)由旋转得:,,,,,,;(2)因为M是中点,所以,,,,.∵∠PCQ=∠PBC=90°,∴∠BQC+∠BPC=∠BCP+∠BPC=90°,∴∠BQC=∠BCP=∠A,,,;(3),最小,即最小,,取PQ的中点G,,即PQ=2CG,当最小时,最小,,与重合,最小,∵的最小值为,.【点睛】本题属于四边形综合题,主要考查了旋转的性质,解直角三角形以及直角三角形的性质的综合运用,解题时注意:旋转变换中,对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.9.问题呈现:如图1,在边长为1的正方形网格中,分别连接格点A,B和C,D,AB和CD相交于点P,求tan∠BPD的值.方法归纳:利用网格将线段CD平移到线段BE,连接AE,得到格点△ABE,且AE⊥BE,则∠BPD就变换成Rt△ABE中的∠ABE.问题解决:(1)图1中tan∠BPD的值为________;(2)如图2,在边长为1的正方形网格中,分别连接格点A,B和C,D,AB与CD交于点P,求cos∠BPD的值;思维拓展:(3)如图3,AB⊥CD,垂足为B,且AB=4BC,BD=2BC,点E在AB上,且AE=BC,连接AD交CE的延长线于点P,利用网格求sin∠CPD.解析:(1)2;(2);(3)【分析】(1)由题意可得BE∥DC,则∠ABE=∠DPB,那么∠BPD就变换到Rt△ABE中,由锐角三角函数的定义可得出答案;(2)过点A作AE//CD,连接BE,那么∠BPD就变换到等腰Rt△ABE中,由锐角三角函数的定义可得出答案;(3)以BC为边长构造网格,然后把PC平移到AN,则∠CPD就变换成Rt△ADN中的∠NAD,再由锐角三角函数的定义可得出答案.【详解】(1)由勾股定理可得:,∵CD//BE,∴tan∠BPD=tan∠ABE=;(2)过点A作AE//CD,连接BE,由图可知E点在格点上,且∠AEB=90°,由勾股定理可得:∴cos∠BPD=cos∠BAE=(3)如图3构造网格,过点A作AN//PC,连接DN,由图可知N点在格点上,且∠AND=90°,由勾股定理可得:∴sin∠CPD=sin∠NAD=【点睛】本题考查三角形综合题、平行线的性质、勾股定理、直角三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,学会用转化的思想思考问题,属于中考压轴题.10.定义:如果一个三角形一条边上的高与这条边的比值是3:5,那么称这个三角形为“准黄金”三角形,这条边就叫做这个三角形的“金底”.(概念感知)(1)如图1,在中,,,,试判断是否是“准黄金”三角形,请说明理由.(问题探究)(2)如图2,是“准黄金”三角形,BC是“金底”,把沿BC翻折得到,连AB接AD交BC的延长线于点E,若点C恰好是的重心,求的值.(拓展提升)(3)如图3,,且直线与之间的距离为3,“准黄金”的“金底”BC在直线上,点A在直线上.,若是钝角,将绕点按顺时针方向旋转得到,线段交于点D.①当时,则_________;②如图4,当点B落在直线上时,求的值.解析:(1)是“准黄金”三角形,理由见解析;(2);(3)①;②.【分析】(1)过点A作于点D,先求出AD的长度,然后得到,即可得到结论;(2)根据题意,由“金底”的定义得,设,,由勾股定理求出AB的长度,根据比值即可求出的值;(3)①作AE⊥BC于E,DF⊥AC于F,先求出AC的长度,由相似三角形的性质,得到AF=2DF,由解直角三角形,得到,则,即可求出DF的长度,然后得到CD的长度;②由①可知,得到CE和AC的长度,分别过点,D作,,垂足分别为点G,F,然后根据相似三角形的判定和性质,得到,然后求出CD和AD的长度,即可得到答案.【详解】解:(1)是“准黄金”三角形.理由:如图,过点A作于点D,∵,,∴.∴.∴是“准黄金”三角形.(2)∵点A,D关于BC对称,∴,.∵是“准黄金”三角形,BC是“金底”,∴.不防设,,∵点为的重心,∴.∴,.∴.∴.(3)①作AE⊥BC于E,DF⊥AC于F,如图:由题意得AE=3,∵,∴BC=5,∵,∴,在Rt△ABE中,由勾股定理得:,∴,∴;∵∠AEC=∠DFA=90°,∠ACE=∠DAF,∴△ACE∽△DAF,∴,设,则,∵∠ACD=30°,∴,∴,解得:∴.②如图,过点A作于点E,则.∵是“准黄金”三角形,BC是“金底”,∴.∴.∵,∴.∴.∴,.分别过点,D作,,垂足分别为点G,F,∴,,,则.∵,∴.∴.∴设,,.∵,∴,且.∴.∴.∴,解得.∴,.∴.【点睛】本题属于相似形综合题,主要考查了重心的性质,等腰直角三角形的性质,勾股定理,解直角三角形,旋转的性质以及勾股定理的综合运用,解决问题的关键是依据题意画出图形,根据数形结合的思想进行解答.11.数学课外活动小组的同学在学习了完全平方公式之后,针对两个正数之和与这两个正数之积的算术平方根的两倍之间的关系进行了探究,请阅读以下探究过程并解决问题.猜想发现:由;;;;;猜想:如果,,那么存在(当且仅当时等号成立).猜想证明:∵∴①当且仅当,即时,,∴;②当,即时,,∴.综合上述可得:若,,则成立(当日仅当时等号成立).猜想运用:(1)对于函数,当取何值时,函数的值最小?最小值是多少?变式探究:(2)对于函数,当取何值时,函数的值最小?最小值是多少?拓展应用:(3)疫情期间、为了解决疑似人员的临隔离问题.高速公路榆测站入口处,检测人员利用检测站的一面墙(墙的长度不限),用63米长的钢丝网围成了9间相同的长方形隔离房,如图.设每间离房的面积为(米2).问:每间隔离房的长、宽各为多少时,可使每间隔离房的面积最大?最大面积是多少?解析:(1),函数的最小值为2;(2),函数的最小值为5;(3)每间隔离房长为米,宽为米时,的最大值为【分析】猜想运用:根据材料以及所学完全平方公式证明求解即可;变式探究:将原式转换为,再根据材料中方法计算即可;拓展应用:设每间隔离房与墙平行的边为米,与墙垂直的边为米,依题意列出方程,然后根据两个正数之和与这两个正数之积的算术平方根的两倍之间的关系探究最大值即可.【详解】猜想运用:∵,∴,∴,∴当时,,此时,只取,即时,函数的最小值为2.变式探究:∵,∴,,∴,∴当时,,此时,∴,(舍去),即时,函数的最小值为5.拓展应用:设每间隔离房与墙平行的边为米,与墙垂直的边为米,依题意得:,即,∵,,∴,即,整理得:,即,∴当时,此时,,即每间隔离房长为米,宽为米时,的最大值为.【点睛】本题主要考查根据完全平方公式探究两个正数之和与这两个正数之积的算术平方根的两倍之间的关系,熟练运用完全平方公式并参照材料中步骤进行计算是解题关键,属于创新探究题.12.探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:,.(1)请你帮小明写出中点坐标公式的证明过程;运用:(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为;②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D的坐标:;拓展:(3)如图3,点P(2,n)在函数(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.解析:(1)答案见解析;(2)①;②(﹣3,3)或(7,1)或(﹣1,﹣3);(3).【详解】试题分析:(1)用P1、P2的坐标分别表示出OQ和PQ的长即可证得结论;(2)①直接利用两点间距离公式可求得MN的长;②分AB、AC、BC为对角线,可求得其中心的坐标,再利用中点坐标公式可求得D点坐标;(3)设P关于直线OL的对称点为M,关于x轴的对称点为N,连接PM交直线OL于点R,连接PN交x轴于点S,则可知OR=OS=2,利用两点间距离公式可求得R的坐标,再由PR=PS=n,可求得n的值,可求得P点坐标,利用中点坐标公式可求得M点坐标,由对称性可求得N点坐标,连接MN交直线OL于点E,交x轴于点S,此时EP=EM,FP=FN,此时满足△PEF的周长最小,利用两点间距离公式可求得其周长的最小值.试题解析:(1)∵P1(x1,y1),P2(x2,y2),∴Q1Q2=OQ2﹣OQ1=x2﹣x1,∴Q1Q=,∴OQ=OQ1+Q1Q=x1+=,∵PQ为梯形P1Q1Q2P2的中位线,∴PQ==,即线段P1P2的中点P(x,y)P的坐标公式为x=,y=;(2)①∵M(2,﹣1),N(﹣3,5),∴MN==,故答案为;②∵A(2,2),B(﹣2,0),C(3,﹣1),∴当AB为平行四边形的对角线时,其对称中心坐标为(0,1),设D(x,y),则x+3=0,y+(﹣1)=2,解得x=﹣3,y=3,∴此时D点坐标为(﹣3,3),当AC为对角线时,同理可求得D点坐标为(7,1),当BC为对角线时,同理可求得D点坐标为(﹣1,﹣3),综上可知D点坐标为(﹣3,3)或(7,1)或(﹣1,﹣3),故答案为(﹣3,3)或(7,1)或(﹣1,﹣3);(3)如图,设P关于直线OL的对称点为M,关于x轴的对称点为N,连接PM交直线OL于点R,连接PN交x轴于点S,连接MN交直线OL于点E,交x轴于点F,又对称性可知EP=EM,FP=FN,∴PE+PF+EF=ME+EF+NF=MN,∴此时△PEF的周长即为MN的长,为最小,设R(x,),由题意可知OR=OS=2,PR=PS=n,∴=2,解得x=﹣(舍去)或x=,∴R(,),∴,解得n=1,∴P(2,1),∴N(2,﹣1),设M(x,y),则=,=,解得x=,y=,∴M(,),∴MN==,即△PEF的周长的最小值为.考点:一次函数综合题;阅读型;分类讨论;最值问题;探究型;压轴题.13.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.(1)概念理解:如图1,在中,,.,试判断是否是“等高底”三角形,请说明理由.(2)问题探究:如图2,是“等高底”三角形,是“等底”,作关于所在直线的对称图形得到,连结交直线于点.若点是的重心,求的值.(3)应用拓展:如图3,已知,与之间的距离为2.“等高底”的“等底”在直线上,点在直线上,有一边的长是的倍.将绕点按顺时针方向旋转得到,所在直线交于点.求的值.解析:(1)证明见解析;(2)(3)的值为,,2【解析】分析:(1)过点A作AD⊥直线CB于点D,可以得到AD=BC=3,即可得到结论;(2)根据ΔABC是“等高底”三角形,BC是“等底”,得到AD=BC,再由ΔA′BC与ΔABC关于直线BC对称,得到∠ADC=90°,由重心的性质,得到BC=2BD.设BD=x,则AD=BC=2x,CD=3x,由勾股定理得AC=x,即可得到结论;(3)分两种情况讨论即可:①当AB=BC时,再分两种情况讨论;②当AC=BC时,再分两种情况讨论即可.详解:(1)是.理由如下:如图1,过点A作AD⊥直线CB于点D,∴ΔADC为直角三角形,∠ADC=90°.∵∠ACB=30°,AC=6,∴AD=AC=3,∴AD=BC=3,即ΔABC是“等高底”三角形.(2)如图2,∵ΔABC是“等高底”三角形,BC是“等底”,∴AD=BC,∵ΔA′BC与ΔABC关于直线BC对称,∴∠ADC=90°.∵点B是ΔAA′C的重心,∴BC=2BD.设BD=x,则AD=BC=2x,∴CD=3x,∴由勾股定理得AC=x,∴.(3)①当AB=BC时,Ⅰ.如图3,作AE⊥l1于点E,DF⊥AC于点F.∵“等高底”ΔABC的“等底”为BC,l1//l2,l1与l2之间的距离为2,AB=BC,∴BC=AE=2,AB=2,∴BE=2,即EC=4,∴AC=.∵ΔABC绕点C按顺时针方向旋转45°得到ΔA'B'C,∴∠CDF=45°.设DF=CF=x.∵l1//l2,∴∠ACE=∠DAF,∴,即AF=2x.∴AC=3x=,可得x=,∴CD=x=.Ⅱ.如图4,此时ΔABC是等腰直角三角形,∵ΔABC绕点C按顺时针方向旋转45°得到ΔA'B'C,∴ΔACD是等腰直角三角形,∴CD=AC=.②当AC=BC时,Ⅰ.如图5,此时△ABC是等腰直角三角形.∵ΔABC绕点C按顺时针方向旋转45°得到ΔA′B′C,∴A′C⊥l1,∴CD=AB=BC=2.Ⅱ.如图6,作AE⊥l1于点E,则AE=BC,∴AC=BC=AE,∴∠ACE=45°,∴ΔABC绕点C按顺时针方向旋转45°得到ΔA′B′C时,点A′在直线l1上,∴A′C∥l2,即直线A′C与l2无交点.综上所述:CD的值为,,2.点睛:本题是几何变换-旋转综合题.考查了重心的性质,勾股定理,旋转的性质以及阅读理解能力.解题的关键是对新概念“等高底”三角形的理解.14.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.解析:(1)①1;②40°;(2),90°;(3)AC的长为3或2.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC∽△BOD,则∠AMB=90°,,可得AC的长.【详解】(1)问题发现:①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°-(∠CAO+∠OAB+∠ABD)=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°,(2)类比探究:如图2,,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴,∠CAO=∠DBO,在△AMB中,∠AMB=180°-(∠MAB+∠ABM)=180°-(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸:①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x-2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,(x)2+(x−2)2=(2)2,x2-x-6=0,(x-3)(x+2)=0,x1=3,x2=-2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,(x)2+(x+2)2=(2)2.x2+x-6=0,(x+3)(x-2)=0,x1=-3,x2=2,∴AC=2;.综上所述,AC的长为3或2.【点睛】本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC∽△BOD,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.15.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转.当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2.则S1与S2的数量关系是.(2)猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDC,请直接写出相应的BF的长解析:解:(1)①DE∥AC.②.(2)仍然成立,证明见解析;(3)或.【详解】(1)①由旋转可知:AC=DC,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=60°.∴△ADC是等边三角形.∴∠DCA=60°.∴∠DCA=∠CDE=60°.∴DE∥AC.②过D作DN⊥AC交AC于点N,过E作EM⊥AC交AC延长线于M,过C作CF⊥AB交AB于点F.由①可知:△ADC是等边三角形,DE∥AC,∴DN=CF,DN=EM.∴CF=EM.∵∠C=90°,∠B=30°∴AB=2AC.又∵AD=AC∴BD=AC.∵∴.(2)如图,过点D作DM⊥BC于M,过点A作AN⊥CE交EC的延长线于N,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时S△DCF1=S△BDE;过点D作DF2⊥BD,∵∠ABC=60°,F1D∥BE,∴∠F2F1D=∠ABC=60°,∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等边三角形,∴DF1=DF2,过点D作DG⊥BC于G,∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB=×60°=30°,∴∠CDF1=180°-∠BCD=180°-30°=150°,∠CDF2=360°-150°-60°=150°,∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,,∴△CDF1≌△CDF2(SAS),∴点F2也是所求的点,∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD=×60°=30°,又∵BD=4,∴BE=×4÷cos30°=,∴BF1=,BF2=BF1+F1F2=+=,故BF的长为或.16.(1)(阅读与证明)如图1,在正的外角内引射线,作点C关于的对称点E(点E在内),连接,、分别交于点F、G.①完成证明:点E是点C关于的对称点,,,.正中,,,,得.在中,,______.在中,,______.②求证:.(2)(类比与探究)把(1)中的“正”改为“正方形”,其余条件不变,如图2.类比探究,可得:①______;②线段、、之间存在数量关系___________.(3)(归纳与拓展)如图3,点A在射线上,,,在内引射线,作点C关于的对称点E(点E在内),连接,、分别交于点F、G.则线段、、之间的数量关系为__________.解析:(1)①60°,30°;②证明见解析;(2)①45°;②BF=(AF+FG);(3).【分析】(1)①根据等量代换和直角三角形的性质即可确定答案;②在FB上取AN=AF,连接AN.先证明△AFN是等边三角形,得到∠BAN=∠2=∠1,然后再证明△ABN≌△AEF,然后利用全等三角形的性质以及线段的和差即可证明;(2)类比(1)的方法即可作答;(3)根据(1)(2)的结论,即可总结出答案.【详解】解:(1)①∵,,∴,即60°;∵∴故答案为60°,30°;②在FB上取FN=AF,连接AN∵∠AFN=∠EFG=60°∴△AFN是等边三角形∴AF=FN=AN∵FN=AF∴∠BAC=∠NAF=60°∴∠BAN+∠NAC=∠NAC+∠2∴∠BAN=∠2∵点C关于的对称点E∴∠2=∠1,AC=AE∴∠BAN=∠2=∠1∵AB=AC∴AB=AE在△ABN和△AEFFN=AF,∠BAN=∠1,AB=AE∴△ABN≌△AEF∴BN=EF∵AG⊥CE,∠FEG=30°∴EF=2FG∴BN=EF=2FG∵BF=BN+NF∴BF=2FG+AF(2)①点E是点C关于的对称点,,,.正方形ABCD中,,,,得.在中,,45.在中,,45.故答案为45°;②在FB上取FN=AF,连接AN∵∠AFN=∠EFG=45°∴△AFN是等腰直角三角形∴∠NAF=90°,AF=AN∴∠BAN+∠NAC=∠NAC+∠2=90°,FN=AF∴∠BAN=∠2∵点C关于的对称点E∴∠2=∠1,AC=AE∴∠BAN=∠2=∠1∵AB=AC∴AB=AE在△ABN和△AEFFN=AF,∠BAN=∠1,AB=AE∴△ABN≌△AEF∴BN=EF∵AG⊥CE,∠FEG=45°∴EF=FG∴BN=EF=FG∵BF=BN+NF∴BF=FG+AF(3)由(1)得:当∠BAC=60°时BF=AF+2FG=;由(2)得:当∠BAC=90°时BF=AF+2FG=;以此类推,当当∠BAC=60°时,.【点睛】本题考查了轴对称的性质、全等三角形的判定与性质、等腰三角形的判定与性质、等边三角形的判定与性质以及三角函数的应用,灵活应用所学知识是解答本题的关键.17.如图1,在等腰三角形中,点分别在边上,连接点分别为的中点.(1)观察猜想图1中,线段的数量关系是____,的大小为_____;(2)探究证明把绕点顺时针方向旋转到如图2所示的位置,连接判断的形状,并说明理由;(3)拓展延伸把绕点在平面内自由旋转,若,请求出面积的最大值.解析:(1)相等,;(2)是等边三角形,理由见解析;(3)面积的最大值为.【分析】(1)根据"点分别为的中点",可得MNBD,NPCE,根据三角形外角和定理,等量代换求出.(2)先求出,得出,根据MNBD,NPCE,和三角形外角和定理,可知MN=PN,再等量代换求出,即可求解.(3)根据,可知BD最大值,继而求出面积的最大值.【详解】由题意知:AB=AC,AD=AE,且点分别为的中点,∴BD=CE,MNBD,NPCE,MN=BD,NP=EC∴MN=NP又∵MNBD,NPCE,∠A=,AB=AC,∴∠MNE=∠DBE,∠NPB=∠C,∠ABC=∠C=根据三角形外角和定理,得∠ENP=∠NBP+∠NPB∵∠MNP=∠MNE+∠ENP,∠ENP=∠NBP+∠NPB,∠NPB=∠C,∠MNE=∠DBE,∴∠MNP=∠DBE+∠NBP+∠C=∠ABC+∠C=.是等边三角形.理由如下:如图,由旋转可得在ABD和ACE中.点分别为的中点,是的中位线,且同理可证且.在中∵∠MNP=,MN=PN是等边三角形.根据题意得:即,从而的面积.∴面积的最大值为.【点睛】本题主要考查了三角形中点的性质、三角形相似的判定定理、三角形外角和定理以及图形旋转的相关知识;正确掌握三角形相似的判定定理、三角形外角和定理以及图形旋转的相关知识是解题的关键.18.(阅读理解)如图1,,的面积与的面积相等吗?为什么?解:相等,在和中,分别作,,垂足分别为,.,.,四边形是平行四边形,.又,,.(类比探究)问题①,如图2,在正方形的右侧作等腰,,,连接,求的面积.解:过点作于点,连接.请将余下的求解步骤补充完整.(拓展应用)问题②,如图3,在正方形的右侧作正方形,点,,在同一直线上,,连接,,,直接写出的面积.解析:①;②.【分析】①过点作于点,连接,可得,根据材料可知,再由等腰三角形性质可知,即可求出;②连接CE,证明,即可得,由此即可求解.【详解】解:①过点作于点,连接,∵在正方形中,,∴,∴,∵,,∴,∵在正方形中,,∴;②,过程如下:如解图3,连接CE,∵在正方形、正方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二硫化碳项目可行性研究报告
- 盘扣项目可行性研究报告模板范本
- 2025年铁路叫班员(高级)职业技能鉴定参考试指导题库(含答案)
- 低压电工考试模拟试卷测试题(答案)
- 2025年全国安全知识竞赛经典题库及答案
- 中国辣椒油性树脂项目创业投资方案
- 江苏建筑施工升降机信号司索工考试题库及答案
- 2025年能源资源管理与可持续发展试卷及答案
- 2025年价格鉴证师资格考试(价格鉴证理论与实务)考前冲刺试题及答案四
- 木质餐椅项目可行性研究报告目录及大纲
- 供货方案及保证措施供货方案供货实施方案及保障措施
- 焊接电极管理办法
- 电焊工职业健康安全培训
- 速冻食品生产和经营卫生规范培训
- 微塑料污染对淡水生态的威胁-洞察及研究
- 急诊床旁超声诊断
- 中国零售行业分析
- 地铁礼仪知识课件
- 课件-领越领导力
- 学堂在线 军事历史-第二次世界大战史 期末考试答案
- 电梯司机培训内容大纲
评论
0/150
提交评论