




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
滁州市八年级数学试卷易错易错压轴选择题精选:勾股定理选择题训练经典题目一、易错易错压轴选择题精选:勾股定理选择题1.下列以线段a、b、c的长为边的三角形中,不能构成直角三角形的是()A. B.C. D.2.将6个边长是1的正方形无缝隙铺成一个矩形,则这个矩形的对角线长等于()A. B. C.或者 D.或者3.如图,在长方形纸片中,,.把长方形纸片沿直线折叠,点落在点处,交于点,则的长为()A. B. C. D.4.如图,已知,点在边上,,点是边上一个动点,若周长的最小值是6,则的长是()A. B. C. D.15.如图,等边的边长为,,分别是,上的两点,将沿直线折叠,点落在点处,且点在外部,则阴影部分图形的周长为()A. B. C. D.6.在中,是直线上一点,已知,,,,则的长为()A.4或14 B.10或14 C.14 D.107.如图,在四边形ABCD中,,与的平分线相交于BC边上的M点,则下列结论:①;②;③;④到AD的距离等于BC的;⑤为BC的中点;其中正确的有()A.2个 B.3个 C.4个 D.5个8.在中,边上的中线,则的面积为()A.6 B.7 C.8 D.99.如图,在中,、分别是、的中点.已知,,,则的长为()A. B. C. D.10.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.1011.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()A. B. C.4 D.712.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了上图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是()A.1 B.2021 C.2020 D.201913.一个直角三角形两边长分别是和,则第三边的长是()A. B.或 C.或 D.14.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为()A. B. C. D.15.以线段、b、c的长为边长能构成直角三角形的是()A.=3,b=4,c=6 B.=1,b=,c=C.=5,b=6,c=8 D.=,b=2,c=16.已知是的三边,且满足,则是()A.直角三角形 B.等边三角形C.等腰直角三角形 D.等腰三角形或直角三角形17.如图,在数轴上点所表示的数为,则的值为()A. B. C. D.18.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是一根竹子,原高一丈(一丈=10尺)一阵风将竹子折断,某竹梢恰好抵地,抵地处离竹子底部6尺远,则折断处离地面的高度是()A.5.3尺 B.6.8尺 C.4.7尺 D.3.2尺19.如图,已知,则数轴上点所表示的数为()A. B. C. D.20.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果∠A﹣∠B=∠C,那么△ABC是直角三角形B.如果∠A:∠B:∠C=1:2:3,那么△ABC是直角三角形C.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形D.如果a2=b2﹣c2,那么△ABC是直角三角形且∠A=90°21.下列命题中,是假命题的是()A.在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形B.在△ABC中,若a2=(b+c)(b-c),则△ABC是直角三角形C.在△ABC中,若∠B=∠C=∠A,则△ABC是直角三角形D.在△ABC中,若a:b:c=5:4:3,则△ABC是直角三角形22.甲、乙两艘轮船同时从港口出发,甲以16海里/时的速度向北偏东的方向航行,它们出发1.5小时后,两船相距30海里,若乙以12海里/时的速度航行,则它的航行方向为()A.北偏西 B.南偏西75°C.南偏东或北偏西 D.南偏西或北偏东23.有一个直角三角形的两边长分别为3和4,则第三边的长为()A.5 B. C. D.5或24.如图,直角三角形两直角边的长分别为3和4,以直角三角形的两直边为直径作半圆,则阴影部分的面积是(
)A.6 B. C.2π D.1225.已知,等边三角形ΔABC中,边长为2,则面积为()A.1 B.2 C. D.26.如图,中,有一点在上移动.若,则的最小值为()A.8 B.8.8 C.9.8 D.1027.如图,是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF的长是()A.14 B.13 C.14 D.1428.在△ABC中,AB=10,BC=12,BC边上的中线AD=8,则△ABC边AB上的高为()A.8 B.9.6 C.10 D.1229.下列说法不能得到直角三角形的()A.三个角度之比为1:2:3的三角形 B.三个边长之比为3:4:5的三角形C.三个边长之比为8:16:17的三角形 D.三个角度之比为1:1:2的三角形30.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为,,;如图2,分别以直角三角形三边长为直径向外作半圆,面积分别为,,,其中,,,,则().A.86 B.61 C.54 D.48【参考答案】***试卷处理标记,请不要删除一、易错易错压轴选择题精选:勾股定理选择题1.D解析:D【分析】根据直角三角形的判定,符合a2+b2=c2即可;反之不符合的不能构成直角三角形.【详解】解:A、因为92+402=412,故能构成直角三角形;B、因为52+52=,故能构成直角三角形;C、因为,故能构成直角三角形;D、因为112+122≠152,故不能构成直角三角形;故选:D.【点睛】本题考查的是勾股定理的逆定理,当三角形中三边满足关系时,则三角形为直角三角形.2.C解析:C【分析】如图1或图2所示,分类讨论,利用勾股定理可得结论.【详解】当如图1所示时,AB=2,BC=3,∴AC=;当如图2所示时,AB=1,BC=6,∴AC=;故选C.【点睛】本题主要考查图形的拼接,数形结合,分类讨论是解答此题的关键.3.A解析:A【分析】由已知条件可证△CFE≌△AFD,得到DF=EF,利用折叠知AE=AB=8cm,设AF=xcm,则DF=(8-x)cm,在Rt△AFD中,利用勾股定理即可求得x的值.【详解】∵四边形ABCD是长方形,∴∠B=∠D=900,BC=AD,由翻折得AE=AB=8m,∠E=∠B=900,CE=BC=AD又∵∠CFE=∠AFD∴△CFE≌△AFD∴EF=DF设AF=xcm,则DF=(8-x)cm在Rt△AFD中,AF2=DF2+AD2,AD=6cm,故选择A.【点睛】此题是翻折问题,利用勾股定理求线段的长度.4.D解析:D【分析】作点A关于OM的对称点E,AE交OM于点D,连接BE、OE,BE交OM于点C,此时△ABC周长最小,根据题意及作图可得出△OAD是等腰直角三角形,OA=OE=3,,所以∠OAE=∠OEA=45°,从而证明△BOE是直角三角形,然后设AB=x,则OB=3+x,根据周长最小值可表示出BE=6-x,最后在Rt△OBE中,利用勾股定理建立方程求解即可.【详解】解:作点A关于OM的对称点E,AE交OM于点D,连接BE、OE,BE交OM于点C,此时△ABC周长最小,最小值=AB+AC+BC=AB+EC+BC=AB+BE,∵△ABC周长的最小值是6,∴AB+BE=6,∵∠MON=45°,AD⊥OM,∴△OAD是等腰直角三角形,∠OAD=45°,由作图可知OM垂直平分AE,∴OA=OE=3,∴∠OAE=∠OEA=45°,∴∠AOE=90°,∴△BOE是直角三角形,设AB=x,则OB=3+x,BE=6-x,在Rt△OBE中,,解得:x=1,∴AB=1.故选D.【点睛】本题考查了利用轴对称求最值,等腰直角三角形的判定与性质,勾股定理,熟练掌握作图技巧,正确利用勾股定理建立出方程是解题的关键.5.D解析:D【分析】根据折叠的性质可得AD=A'D,AE=A'E,易得阴影部分图形的周长为=AB+BC+AC,则可求得答案.【详解】解:因为等边三角形ABC的边长为1cm,所以AB=BC=AC=1cm,因为△ADE沿直线DE折叠,点A落在点A'处,所以AD=A'D,AE=A'E,所以阴影部分图形的周长=BD+A'D+BC+A'E+EC=BD+AD+BC+AE+EC=AB+BC+AC=1+1+1=3(cm).故选:D.【点睛】此题考查了折叠的性质与等边三角形的性质.此题难度适中,注意掌握数形结合思想与转化思想的应用以及折叠前后图形的对应关系.6.A解析:A【分析】根据AC=13,AD=12,CD=5,可判断出△ADC是直角三角形,在Rt△ADB中求出BD,继而可得出BC的长度.【详解】∵AC=13,AD=12,CD=5,∴,∴△ABD是直角三角形,AD⊥BC,由于点D在直线BC上,分两种情况讨论:当点D在线段BC上时,如图所示,在Rt△ADB中,,则;②当点D在BC延长线上时,如图所示,在Rt△ADB中,,则.故答案为:A.【点睛】本题考查勾股定理和逆定理,需要分类讨论,掌握勾股定理和逆定理的应用为解题关键.7.C解析:C【分析】过作于,得出,,求出,根据三角形内角和定理求出,即可判断①;根据角平分线性质求出,,即可判断④和⑤;由勾股定理求出,,即可判断③;根据证,推出,同理得出,即可判断②.【详解】解:过作于,与的平分线相交于边上的点,,,,,,,故①正确;平分,,,,同理,,故⑤正确;到的距离等于的一半,故④错误;由勾股定理得:,,又,,,同理,,故③正确;在和中,,同理,,故②正确;故选:.【点睛】本题考查了角平分线性质,垂直定义,直角梯形,勾股定理,全等三角形的性质和判定等知识点的应用,主要考查学生运用定理进行推理的能力.8.B解析:B【分析】本题考查三角形的中线定义,根据条件先确定ABC为直角三角形,再根据勾股定理求得,最后根据求解即可.【详解】解:如图,在中,边上的中线,∵CD=3,AB=6,∴CD=3,AB=6,∴CD=AD=DB,,,∵,∴,∴是直角三角形,∴,又∵,∴,∴,又∵,∴,故选B.【点睛】本题考查三角形中位线的应用,熟练运用三角形的中线定义以及综合分析、解答问题的能力,关键要懂得:在一个三角形中,如果获知一条边上的中线等于这一边的一半,那么就可考虑它是一个直角三角形,通过等腰三角形的性质和内角和定理来证明一个三是直角三角形.9.C解析:C【分析】设EC=x,DC=y,则直角△BCE中,x2+4y2=BE2=16,在直角△ADC中,4x2+y2=AD2=49,由方程组可求得x2+y2,在直角△ABC中,【详解】解:设EC=x,DC=y,∠ACB=90°,∵、分别是、的中点,∴AC=2EC=2x,BC=2DC=2y,∴在直角△BCE中,CE2+BC2=x2+4y2=BE2=16在直角△ADC中,AC2+CD2=4x2+y2=AD2=49,∴,即,在直角△ABC中,.故选:C.【点睛】本题考查了勾股定理的灵活运用,考查了中点的定义,本题中根据直角△BCE和直角△ADC求得的值是解题的关键.10.C解析:C【分析】根据等腰三角形的三线合一得出∠ADB=90°,再根据勾股定理得出BD的长,即可得出BC的长.【详解】在△ABC中,AB=AC,AD是∠BAC的平分线,ADBC,BC=2BD.∠ADB=90°在Rt△ABD中,根据勾股定理得:BD===4BC=2BD=2×4=8.故选C.【点睛】本题考查了等腰三角形的性质及勾股定理,熟练掌握性质定理是解题的关键.11.A解析:A【解析】试题解析:作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE,,∴△ABD≌△BCE∴BE=AD=3在Rt△BCE中,根据勾股定理,得BC=,在Rt△ABC中,根据勾股定理,得AC=.故选A.考点:1.勾股定理;2.全等三角形的性质;3.全等三角形的判定.12.B解析:B【分析】根据勾股定理求出“生长”了1次后形成的图形中所有的正方形的面积和,结合图形总结规律,根据规律解答即可.【详解】解:由题意得,正方形A的面积为1,由勾股定理得,正方形B的面积+正方形C的面积=1,∴“生长”了1次后形成的图形中所有的正方形的面积和为2,同理可得,“生长”了2次后形成的图形中所有的正方形的面积和为3,∴“生长”了3次后形成的图形中所有的正方形的面积和为4,……∴“生长”了2020次后形成的图形中所有的正方形的面积和为2021,故选:B.【点睛】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.13.C解析:C【分析】记第三边为c,然后分c为直角三角形的斜边和直角边两种情况,利用勾股定理求解即可.【详解】解:记第三边为c,若c为直角三角形的斜边,则;若c为直角三角形的直角边,则.故选:C.【点睛】本题考查了勾股定理,属于基本题目,正确分类、熟练掌握勾股定理是解题的关键.14.D解析:D【分析】由于BC∥AD,那么有∠DAE=∠ACB,由题意可知∠ABC=∠DEA=90°,BA=ED,利用AAS可证△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根据图可知从B到E的走法有两种,分别计算比较即可.【详解】解:如图所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC中,AC=∴CE=AC-AE=200,从B到E有两种走法:①BA+AE=700m;②BC+CE=500m,∴最近的路程是500m.故选D.【点睛】本题考查了平行线的性质、全等三角形的判定和性质、勾股定理.解题的关键是证明△ABC≌△DEA,并能比较从B到E有两种走法.15.B解析:B【分析】根据勾股定理的逆定理对四个选项进行逐一分析即可.【详解】A、,C、,D、,故错误;B、,能构成直角三角形,本选项正确.故选B.【点睛】本题考查了勾股定理的知识点,解题的关键是熟练的掌握勾股定理的定理与运算.16.D解析:D【分析】由(a-b)(a2-b2-c2)=0,可得:a-b=0,或a2-b2-c2=0,进而可得a=b或a2=b2+c2,进而判断△ABC的形状为等腰三角形或直角三角形.【详解】解:∵(a-b)(a2-b2-c2)=0,∴a-b=0,或a2-b2-c2=0,即a=b或a2=b2+c2,∴△ABC的形状为等腰三角形或直角三角形.故选:D.【点睛】本题考查了勾股定理的逆定理以及等腰三角形的判定,解题时注意:有两边相等的三角形是等腰三角形,满足a2+b2=c2的三角形是直角三角形.17.A解析:A【分析】首先根据勾股定理得出圆弧的半径,然后得出点A的坐标.【详解】解:∴由图可知:点A所表示的数为:故选:A【点睛】本题主要考查的就是数轴上点所表示的数,属于基础题型.解决这个问题的关键就是求出斜边的长度.在数轴上两点之间的距离是指两点所表示的数的差的绝对值.18.D解析:D【分析】根据题意结合勾股定理得出折断处离地面的长度即可.【详解】解:设折断处离地面的高度OA是x尺,根据题意可得:x2+62=(10-x)2,解得:x=3.2,答:折断处离地面的高度OA是3.2尺.故选D.【点睛】此题主要考查了勾股定理的应用,根据题意正确应用勾股定理是解题关键.19.D解析:D【分析】根据勾股定理求出AB的长,即为AC的长,再根据数轴上的点的表示解答.【详解】由勾股定理得,∴∵点A表示的数是1∴点C表示的数是故选D.【点睛】本题考查了勾股定理、实数与数轴,熟记定理并求出AB的长是解题的关键.20.D解析:D【分析】根据直角三角形的判定和勾股定理的逆定理解答即可.【详解】选项A中如果∠A﹣∠B=∠C,由∠A+∠B+∠C=180°,可得∠A=90°,那么△ABC是直角三角形,选项正确;选项B中如果∠A:∠B:∠C=1:2:3,由∠A+∠B+∠C=180°,可得∠A=90°,那么△ABC是直角三角形,选项正确;选项C中如果a2:b2:c2=9:16:25,满足a2+b2=c2,那么△ABC是直角三角形,选项正确;选项D中如果a2=b2﹣c2,那么△ABC是直角三角形且∠B=90°,选项错误;故选D.【点睛】考查直角三角形的判定,学生熟练掌握勾股定理逆定理是本题解题的关键,并结合直角三角形的定义解出此题.21.C解析:C【分析】一个三角形中有一个直角,或三边满足勾股定理的逆定理则为直角三角形,否则则不是,据此依次分析各项即可.【详解】A.△ABC中,若∠B=∠C-∠A,则∠C=∠A+∠B,则△ABC是直角三角形,本选项正确;B.△ABC中,若a2=(b+c)(b-c),则a2=b2-c2,b2=a2+c2,则△ABC是直角三角形,本选项正确;C.△ABC中,若∠A∶∠B∶∠C=3∶4∶5,则∠,故本选项错误;D.△ABC中,若a∶b∶c=5∶4∶3,则△ABC是直角三角形,本选项正确;故选C.【点睛】本题考查的是直角三角形的判定,利用勾股定理的逆定理判断一个三角形是否是直角三角形的一般步骤:①确定三角形的最长边;②分别计算出最长边的平方与另两边的平方和;③比较最长边的平方与另两边的平方和是否相等.若相等,则此三角形是直角三角形;否则,就不是直角三角形.22.C解析:C【分析】先求出出发1.5小时后,甲乙两船航行的路程,进而可根据勾股定理的逆定理得出乙船的航行方向与甲船的航行方向垂直,进一步即可得出答案.【详解】解:出发1.5小时后,甲船航行的路程是16×1.5=24海里,乙船航行的路程是12×1.5=18海里;∵,∴乙船的航行方向与甲船的航行方向垂直,∵甲船的航行方向是北偏东75°,∴乙船的航行方向是南偏东15°或北偏西15°.故选:C.【点睛】本题考查了勾股定理的逆定理和方位角,属于常考题型,正确理解题意、熟练掌握勾股定理的逆定理是解题的关键.23.D解析:D【分析】分4是直角边、4是斜边,根据勾股定理计算即可.【详解】当4是直角边时,斜边==5,当4是斜边时,另一条直角边=,故选:D.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.24.A解析:A【分析】分别求出以AB、AC、BC为直径的半圆及△ABC的面积,再根据S阴影=S1+S2+S△ABC-S3即可得出结论.【详解】解:如图所示:∵∠BAC=90°,AB=4cm,AC=3cm,BC=5cm,∴以AB为直径的半圆的面积S1=2π(cm2);以AC为直径的半圆的面积S2=π(cm2);以BC为直径的半圆的面积S3=π(cm2);S△ABC=6(cm2);∴S阴影=S1+S2+S△ABC-S3=6(cm2);故选A.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.25.D解析:D【解析】根据题意可画图为:过点A作AD⊥BC,垂足为D,∵∠B=60°,∴∠BAD=30°,∵AB=2,∴AD=,∴S△ABC=BC·AD=×2×=.故选D.26.C解析:C【分析】由AP+CP=AC得到=BP+AC,即计算当BP最小时即可,此时BP⊥AC,根据三角形面积公式求出BP即可得到答案.【详解】∵AP+CP=AC,∴=BP+AC,∴BP⊥AC时,有最小值,设AH⊥BC,∵∴BH=3,∴,∵,∴,∴BP=4.8,∴=AC+BP=5+4.8=9.8,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 颜回简介课件
- 题记课件教学课件
- 四川省遂宁市射洪中学2026届八年级数学第一学期期末考试模拟试题含解析
- 电路硬件相关知识培训班课件
- 2025金融机构短期信用消费借款合同
- 2025年设备供应合同范本
- 2025关于股东借款合同范本
- 电能采集课件
- 电网前沿知识线上培训课件
- 电缆线生产知识培训总结课件
- 河北省保定市五校2025-2026学年高一上学期9月月考语文试卷(含答案)
- 2025年及未来5年中国第三方检测服务行业市场深度分析及发展前景预测报告
- 申请查业主清册申请书
- 深圳婚姻家事法律课件
- 2025年安徽省选调生考试笔试试卷【附答案】
- 五年(2021-2025)全国高考生物真题分类汇编 专题08 遗传的分子基础(全国通.用)(解析版)
- 2025年中国特色社会主义理论与实践考试试卷及答案
- ODM研发承揽协议
- 初级招采人员考试(招标采购专业实务)试题库及答案(2025年全国)
- 机械拆除与人工拆除配合方案
- 2025鄂尔多斯市国源矿业开发有限责任公司社会招聘75人笔试参考题库附带答案详解
评论
0/150
提交评论