数学苏教七年级下册期末真题模拟题目A卷及解析_第1页
数学苏教七年级下册期末真题模拟题目A卷及解析_第2页
数学苏教七年级下册期末真题模拟题目A卷及解析_第3页
数学苏教七年级下册期末真题模拟题目A卷及解析_第4页
数学苏教七年级下册期末真题模拟题目A卷及解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数学苏教七年级下册期末真题模拟题目A卷及解析一、选择题1.下列计算结果正确的是()A. B. C. D.2.如图,直线a、b被直线c所截,下列说法不正确的是()A.∠1和∠4是内错角 B.∠2和∠3是同旁内角C.∠1和∠3是同位角 D.∠3和∠4互为邻补角3.已知方程组,若,的值相等,则()A. B. C.2 D.4.已知a>b,则下列各式的判断中一定正确的是()A.3a>3b B.3-a>3-b C.-3a>-3b D.5.已知关于x的不等式组恰有5个整数解,则t的取值范围是()A.﹣6<t< B. C. D.6.给出下列四个命题,①多边形的外角和小于内角和;②如果a>b,那么(a+b)(a-b)>0;③两直线平行,同位角相等;④如果a,b是实数,那么,其中真命题的个数为()A.1 B.2 C.3 D.47.观察下列两行数:1,3,5,7,9,11,13,15,17,19,…1,4,7,10,13,16,19,22,25,28,…探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n个相同的数是103,则n等于()A.17 B.18 C.19 D.208.如图,一张四边形纸片,,,,连接,点在边上,把△BDE沿直线BE对折,使点落在线段上的点处,连接.若点,.①;②;③;④,其中正确的结论共有()A.1个 B.2个 C.3个 D.4个二、填空题9.计算:________.10.命题“同旁内角互补”是一个_____命题(填“真”或“假”)11.小张在操场从原地右转40°前行至十米的地方,再右转40°前行十米处,继续此规则前行,问小张第一次回到原地时,共走了_____米.12.已知a,b,c是△ABC的三条边的长度,且满足a2﹣b2=c(a﹣b),则△ABC一定是_____三角形.13.已知且y﹣x2,则k的取值范围是_____.14.如图,点A到直线BC的距离是线段_____的长度.15.将正三角形、正方形、正五边形按照如图所示的位置摆放,如果∠3=33º,那么∠1+∠2=________.16.如图,D、E分别是边AB,BC上的点,AD=2BD,BE=CE,设的面积为的面积为,若,则的值为____________.17.计算:(1).(2)18.因式分解:(1)a3b﹣9ab;(2)x4﹣8x2y2+16y4;19.解方程组:(1);(2).20.解不等式组.三、解答题21.如图,在四边形ABCD中,,,延长BA至点E,连接CE,CE交AD于点F,若和的角平分线相交于点P.(1)求证:;(2)若,,求的度数;22.快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元;两种机器人的单价与每小时分拣快递的数量如下表:甲型机器人乙型机器人购买单价(万元/台)mn每小时拣快递数量(件)12001000(1)求购买甲、乙两种型号的机器人所需的单价m和n分别为多少万元/台?(2)若该公司计划购买这两种型号的机器人共8台,购买甲型机器人不超过4台,并且使这8台机器人每小时分拣快递件数总和不少于8400件,则该公司有几种购买方案?哪种方案费用最低,最低费用是多少万元?23.阅读理解:定义:,,为数轴上三点,若点到点的距离是它到点的时距离的(为大于1的常数)倍,则称点是的倍点,且当是的倍点或的倍点时,我们也称是和两点的倍点.例如,在图1中,点是的2倍点,但点不是的2倍点.(1)特值尝试.①若,图1中,点______是的2倍点.(填或)②若,如图2,,为数轴上两个点,点表示的数是,点表示的数是4,数______表示的点是的3倍点.(2)周密思考:图2中,一动点从出发,以每秒2个单位的速度沿数轴向左运动秒,若恰好是和两点的倍点,求所有符合条件的的值.(用含的式子表示)(3)拓展应用数轴上两点间的距离不超过30个单位长度时,称这两点处于“可视距离”.若(2)中满足条件的和两点的所有倍点均处于点的“可视距离”内,请直接写出的取值范围.(不必写出解答过程)24.小明在学习过程中,对教材中的一个有趣问题做如下探究:(习题回顾)已知:如图1,在中,,是角平分线,是高,、相交于点.求证:;(变式思考)如图2,在中,,是边上的高,若的外角的平分线交的延长线于点,其反向延长线与边的延长线交于点,则与还相等吗?说明理由;(探究延伸)如图3,在中,上存在一点,使得,的平分线交于点.的外角的平分线所在直线与的延长线交于点.直接写出与的数量关系.25.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.(探究1):如图1,在ΔABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90º+∠A,(请补齐空白处)理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=∠ABC,_________________,在ΔABC中,∠A+∠ABC+∠ACB=180º.∴∠1+∠2=(∠ABC+∠ACB)=(180º-∠A)=90º-∠A,∴∠BOC=180º-(∠1+∠2)=180º-(________)=90º+∠A.(探究2):如图2,已知O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?请说明理由.(应用):如图3,在RtΔAOB中,∠AOB=90º,已知AB不平行与CD,AC、BD分别是∠BAO和∠ABO的角平分线,又CE、DE分别是∠ACD和∠BDC的角平分线,则∠E=_______;(拓展):如图4,直线MN与直线PQ相交于O,∠MOQ=60º,点A在射线OP上运动,点B在射线OM上运动,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线交于E、F,在ΔAEF中,如果有一个角是另一个角的4倍,则∠ABO=______.【参考答案】一、选择题1.A解析:A【分析】根据幂的乘方、同底数幂的乘法的运算法则,合并同类项法则、完全平方公式计算得出答案.【详解】解:A、(a3)2=a6,原计算正确,故此选项符合题意;B、a3•a2=a5,原计算错误,故此选项不符合题意;C、a3与a2不是同类项,不能合并,原计算错误,故此选项不符合题意;D、(a-b)2=a2-2ab+b2,原计算错误,故此选项不符合题意;故选:A.【点睛】此题主要考查了幂的乘方、同底数幂的乘法的运算法则,合并同类项法则、完全平方公式,正确掌握运算法则和公式是解题的关键.2.A解析:A【分析】同位角:两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角;内错角:两个角分别在截线的两侧,且在两条被截直线之间,具有这样位置关系的一对角叫做内错角;同旁内角:两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.【详解】解:A、和不是内错角,此选项符合题意;B、和是同旁内角,此选项不符合题意;C、和是同位角,此选项不符合题意;D、和是邻补角,此选项不符合题意;故选A.【点睛】本题主要考查了同位角,同旁内角,内错角,邻补角,理解同位角,内错角和同旁内角和邻补角的定义是关键.3.B解析:B【分析】先根据方程组中x、y相等用y表示出x把原方程组化为关于y、n的二元一次方程组,再用n表示出y的值,代入方程组中另一方程求出n的值即可.【详解】解:∵方程组中的x,y相等,∴原方程组可化为:,由①得,,代入②得,,解得n=-4,故选择:B.【点睛】本题考查的是解二元一次方程组,熟知解二元一次方程组的代入消元法是解答此题的关键.4.A解析:A【详解】【分析】本题考查的是不等式的基本性质,在不等式的两边同时乘以同一个正数,不等号的方向不变.解:a>b3a>3b故选A5.C解析:C【分析】本题首先求解不等式组的公共解集,继而按照整数解要求求解本题.【详解】∵,∴;∵,∴;∴不等式组的解集是:.∵不等式组恰有5个整数解,∴这5个整数解只能为15,16,17,18,19,故有,求解得:.故选:C.【点睛】本题考查含参不等式组的求解,解题关键在于求解不等式时需将参数当做常量进行运算,其次注意运算仔细即可.6.A解析:A【分析】根据多边形的内角和、不等式的性质、平行线的性质和零指数幂判断即可.【详解】解:①多边形的外角和不一定小于内角和,四边形的内角和等于外角和,原命题是假命题;②如果0>a>b,那么(a+b)(a-b)<0,原命题是假命题;③两直线平行,同位角相等,是真命题;④如果a,b是实数,且a+b≠0,那么(a+b)0=1,原命题是假命题.故选:A.【点睛】本题考查了命题与定理的知识,解题的关键是了解多边形的内角和、不等式的性质、平行线的性质和零指数幂,难度较小.7.B解析:B【分析】先分别表示:第个相同的数是:第个相同的数是:第个相同的数是:第个相同的数是:…,再总结出规律,利用规律列方程即可得到答案.【详解】解:探究规律:第个相同的数是:第个相同的数是:第个相同的数是:第个相同的数是:…总结并归纳:第个相同的数是:运用规律:故选:【点睛】本题考查的是数字的规律探究,一元一次方程的解法,掌握列代数式表示规律,利用方程思想解决问题是解题的关键.8.C解析:C【分析】由AB∥CD,得∠ABE=∠BED,根据把△BDE沿直线BE对折,使点D落在线段BC上的点F处,得∠BED=∠AEB,即可判断①正确;由S△ACE=S△BCE,得S△ACE﹣S△CEF=S△BCE﹣S△CEF,即可判断②正确;由∠CAE=∠ABF,AB=AE,根据AAS可判断③正确;假设BE=CE,则∠ECB=∠EBC,可推得BDBC,可判断④不正确;【详解】解:∵AB∥CD,∴∠ABE=∠BED,∵把△BDE沿直线BE对折,使点D落在线段BC上的点F处,∴∠BED=∠AEB,∴∠ABE=∠AEB,故①正确;∵,,∴∠ACD=∠D=90°,∵,∴∠BAC=90°,∴四边形ABDC是矩形,∴AC=BD,∴CE•ACCE•BD,即S△ACE=S△BCE,∴S△ACE﹣S△CEF=S△BCE﹣S△CEF,∴S△BEF=S△ACF,故②正确;∵BD⊥CD,把△BDE沿直线BE对折,使点D落在线段BC上的点F处,∴∠BFE=∠D=90°,∴∠ABF=90°﹣∠FAB,∵四边形ABDC是矩形,∴∠CAE=90°﹣∠FAB,∴∠CAE=∠ABF,∵∠ABE=∠AEB,∴AB=AE,在△ACE和△BFA中,,∴△ACE≌△BFA(AAS),故③正确;若BE=CE,则∠ECB=∠EBC,而∠ECB=∠ABC,∠EBC=∠EBD,∴∠ABC=∠EBC=∠EBD,∵∠ABC+∠EBC+∠EBD=90°,∴∠ABC=∠EBC=∠EBD=30°,∴BDBC,但根据已知不能得到BDBC,故④不正确;∴正确的有①②③,故选:C【点睛】本题考查翻折变换,涉及三角形全等的判定与性质、三角形面积、翻折的性质等知识,解题的关键是掌握翻折性质,证明△ACE≌△BFA.二、填空题9.【分析】原式先计算积的乘方和幂的乘方,再进行单项式乘以单项式运算即可得到答案.【详解】解:故答案为:【点睛】此题主要考查了积的乘方和幂的乘方以及单项式乘以单项式运算,熟练掌握运算法则是解答此题的关键.10.假【分析】根据平行线的性质进行判断即可.【详解】解:∵两直线平行,同旁内角互补∴命题“同旁内角互补”是一个假命题;故答案为假.【点睛】本题考查了平行线的性质和命题真假的判定,熟练掌握平行线的性质是解答本题的关键.11.90【分析】根据正多边形的边、角性质解题.【详解】因为每次右转40°行10米,周而复始.所以当他回到原地时所走的路经是一个正多边形.因为正多边形外角和为360°,所以多边形的边数为:360°÷40°=9,所以所走路经是一个正九边形.9边之和为:9×10=90(米).故答案为:90.【点睛】本题考查正多边形的外角和、正多边形边的性质等知识,是基础考点,掌握相关知识是解题关键.12.A解析:等腰【分析】先把等式左边进行因式分解可化为(a+b)(a﹣b)=c(a﹣b),移项提取公因式可得(a﹣b)(a+b﹣c)=0,根据三角形三边之间的关系两边之和大于第三边,可得a﹣b=0,即可得出答案.【详解】解:由a2﹣b2=c(a﹣b),(a+b)(a﹣b)=c(a﹣b),(a+b)(a﹣b)﹣c(a﹣b)=0,(a﹣b)(a+b﹣c)=0,∵三角形两边之和大于第三边,即a+b>c,∴a+b﹣c≠0,∴a﹣b=0,即a=b,即△ABC一定是等腰三角形.故答案为:等腰.【点睛】本题主要考查了三角形三边之间的关系及因式分解,合理利用因式分解进行计算是解决本题的关键.13.【分析】将方程组中两个方程相减可得y﹣x=3k﹣1,结合y﹣x<2得出关于k的不等式,解之可得答案.【详解】解:,①﹣②,得:﹣x+y=3k﹣1,即y﹣x=3k﹣1,∵y﹣x<2,∴3k﹣1<2,解得k<1,故答案为:k<1.【点睛】本题考查了一元一次不等式的解法,以及二元一次方程组的特殊解法,在求二元一次方程组中两个未知数的和或差的时候,有时可以采用把两个方程直接相加或相减的方法,而不必求出两个未知数的具体值.14.A解析:AE【分析】根据点到直线的距离—点到直线的距离,垂线段最短,可求出答案.【详解】解:∵AE⊥BC,垂足为E,∴点A到直线BC的距离是线段AE的长度.故答案为:AE.【点睛】本题主要考查了点到直线的距离的意义,解题的关键是熟练掌握点到直线的距离的意义.15.69º【分析】根据正三角形、正四边形、正五边形各内角的度数及平角的定义进行解答即可.【详解】解:,正三角形的内角是,正四边形的内角是,正五边形的内角是,,,,,,解得:.故答案解析:69º【分析】根据正三角形、正四边形、正五边形各内角的度数及平角的定义进行解答即可.【详解】解:,正三角形的内角是,正四边形的内角是,正五边形的内角是,,,,,,解得:.故答案为:.【点睛】本题考查的是多边形的内角,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.16.1;【分析】S△ADF−S△CEF=S△ABE−S△BCD,所以求出三角形ABE的面积和三角形BCD的面积即可,因为AD=2BD,BE=CE,且S△ABC=6,就可以求出三角形ABE的面积和三角解析:1;【分析】S△ADF−S△CEF=S△ABE−S△BCD,所以求出三角形ABE的面积和三角形BCD的面积即可,因为AD=2BD,BE=CE,且S△ABC=6,就可以求出三角形ABE的面积和三角形BCD的面积.【详解】解:∵BE=CE,∴BE=BC,∵S△ABC=6,∴S△ABE=S△ABC=×6=3.∵AD=2BD,S△ABC=6,∴S△BCD=S△ABC=×6=2,∵S△ABE−S△BCD=(S1+S四边形BEFD)−(S2+S四边形BEFD)=S1−S2=3-2=1,故答案为1【点睛】本题考查三角形的面积,关键知道当高相等时,面积等于底边的比,据此可求出三角形的面积,然后求出差.17.(1);(2)-4【分析】(1)根据积的乘方、同底数幂的乘除法可以解答本题;(2)根据有理数的乘方、负整数指数幂、零指数幂、绝对值可以解答本题.【详解】解:(1)(﹣ab2)3•(﹣9a3解析:(1);(2)-4【分析】(1)根据积的乘方、同底数幂的乘除法可以解答本题;(2)根据有理数的乘方、负整数指数幂、零指数幂、绝对值可以解答本题.【详解】解:(1)(﹣ab2)3•(﹣9a3bc)÷(﹣3a3b5)=(﹣a3b6)•(﹣9a3bc)÷(﹣3a3b5)=﹣3a3b2c;(2)﹣22+﹣(π﹣5)0﹣|﹣3|=﹣4+4﹣1﹣3=﹣4.【点睛】本题考查了负整数指数幂、零指数幂、积的乘方、同底数幂的乘除法,解题的关键是熟练掌握运算法则进行解题.18.(1)ab(a+3)(a-3);(2)(x+2y)2(x-2y)2.【分析】(1)综合利用提取公因式法和平方差公式法进行因式分解即可得;(2)先利用完全平方公式,再利用平方差公式进行因式分解即解析:(1)ab(a+3)(a-3);(2)(x+2y)2(x-2y)2.【分析】(1)综合利用提取公因式法和平方差公式法进行因式分解即可得;(2)先利用完全平方公式,再利用平方差公式进行因式分解即可.【详解】(1)原式;(2)原式.【点睛】本题考查了综合利用提取公因式法和公式法进行因式分解,熟练掌握因式分解的方法是解题关键.19.(1);(2)【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【详解】解:(1),①-②得:2y=4,解得:y=2,把y=2代入①得:x-2=3,解析:(1);(2)【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【详解】解:(1),①-②得:2y=4,解得:y=2,把y=2代入①得:x-2=3,解得:x=5,则方程组的解为;(2),①×2+②×3得:13x=65,解得:x=5,把x=5代入①得:10+3y=16,解得:y=2,则方程组的解为.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小解不了确定不等式组的解集即可.【详解】解:解不等式①得,,解不等式②得,,∴原不等式组的解集为.解析:【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小解不了确定不等式组的解集即可.【详解】解:解不等式①得,,解不等式②得,,∴原不等式组的解集为.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小解不了”的原则是解答此题的关键.三、解答题21.(1)见解析;(2)【分析】(1)先证明,再证明,从而可得答案;(2)过点P作,交BC于点G,再证明,,再利用平行线的性质可得答案.【详解】解:(1)∵,∴,∵,∴,∴;(2)过解析:(1)见解析;(2)【分析】(1)先证明,再证明,从而可得答案;(2)过点P作,交BC于点G,再证明,,再利用平行线的性质可得答案.【详解】解:(1)∵,∴,∵,∴,∴;(2)过点P作,交BC于点G,∵,∴∵AP平分,∴由(1)知,∴∵CP平分,∴∵,,∴∴,∴【点睛】本题考查的是平行线的判定与性质,平行公理的应用,角平分线的定义,熟练运用以上平行线的性质是解题的关键.22.(1)甲、乙两种型号的机器人每台价格分别是6万元、4万元;(2)公司有3种购买方案,分别是购买甲型机器人2台,乙型机器人6台,购买甲型机器人3台,乙型机器人5台,购买甲型机器人4台,乙型机器人4台;解析:(1)甲、乙两种型号的机器人每台价格分别是6万元、4万元;(2)公司有3种购买方案,分别是购买甲型机器人2台,乙型机器人6台,购买甲型机器人3台,乙型机器人5台,购买甲型机器人4台,乙型机器人4台;该公司购买甲型机器人2台,乙型机器人6台这个方案费用最低,最低费用是36万元【分析】(1)根据甲型机器人1台,乙型机器人2台,共需14万元和购买甲型机器人2台,乙型机器人3台,共需24万元,列出方程组,进行求解即可;(2)设该公可购买甲型机器人a台,乙型机器人(8−a)台,根据两种型号的机器人共8台,每小时分拣快递件数总和不少于8400件,列出不等式,求出a的取值范围,再利用一次函数找到费用最低值.【详解】解:(1)根据题意得:,解得:,答:甲、乙两种型号的机器人每台价格分别是6万元、4万元.(2)设该公可购买甲型机器人a台,乙型机器人台,根据题意得:,解得:,因为,a为正整数,∴a的取值为2,3,4,∴该公司有3种购买方案,分别是购买甲型机器人2台,乙型机器人6台,购买甲型机器人3台,乙型机器人5台,购买甲型机器人4台,乙型机器人4台,设该公司的购买费用为w万元,则,∵,∴w随a的增大而增大,当时,w最小,(万元),∴该公司购买甲型机器人2台,乙型机器人6台这个方案费用最低,最低费用是36万元.【点睛】此题考查了二元一次方程组、一元一次不等式组、一次函数的应用,分析题意,根据关键描述语,找到合适的数量关系是解决问题的关键.23.(1)①B;②7或;(2)或或;(3)n≥.【分析】(1)①直接根据新定义的概念即可求出答案;②根据新定义的概念列出绝对值方程即可求解;(2)设P点所表示的数为4-2t,再根据新定义的概念列解析:(1)①B;②7或;(2)或或;(3)n≥.【分析】(1)①直接根据新定义的概念即可求出答案;②根据新定义的概念列出绝对值方程即可求解;(2)设P点所表示的数为4-2t,再根据新定义的概念列出方程即可求解;(3)分,,三种情况分别表示出PN的值,再根据PN的范围列出不等式组即可求解.【详解】(1)①由数轴可知,点A表示的数为-1,点B表示的数为2,点C表示的数为1,点D表示的数为0,∴AD=1,AC=2∴AD=AC∴点A不是的2倍点∴BD=2,BC=1∴BD=2BC∴点B是的2倍点故答案为:B;②若点C是点的3倍点∴CM=3CN设点C表示的数为x∴CM=,CN=∴=3即或解得x=7或x=∴数7或表示的点是的3倍点.故答案为:7或;(2)设点P表示的数为4-2t,∴PM=,PN=2t∵若恰好是和两点的倍点,∴当点P是的n倍点∴PM=nPN∴=n×2t即6-2t=2nt或6-2t=-2nt解得或∵n>1∴∴当点P是的n倍点∴PN=nPM∴2t=n×即2t=n×或-2t=n×解得或∴符合条件的t值有或或;(3)∵PN=2t∴当时,PN=当时,PN=,当时,PN=∵点P均在点N的可视距离之内∴PN≤30∴解得n≥∴n的取值范围为n≥.【点睛】此题主要考查主要方程与不等式组的应用,解题的关键是根据新定义概念列出方程或不等式求解.24.[习题回顾]证明见解析;[变式思考]相等,证明见解析;[探究延伸]∠M+∠CFE=90°,证明见解析.【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD,再根据三角形的外角的性质即可解析:[习题回顾]证明见解析;[变式思考]相等,证明见解析;[探究延伸]∠M+∠CFE=90°,证明见解析.【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD,再根据三角形的外角的性质即可证明;[变式思考]根据角平分线的定义和对顶角相等可得∠CAE=∠DAF、再根据直角三角形的性质和等角的余角相等即可得出=;[探究延伸]根据角平分线的定义可得∠EAN=90°,根据直角三角形两锐角互余可得∠M+∠CEF=90°,再根据三角形外角的性质可得∠CEF=∠CFE,由此可证∠M+∠CFE=90°.【详解】[习题回顾]证明:∵∠ACB=90°,CD是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD,∵AE是角平分线,∴∠CAF=∠DAF,∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B,∴∠CEF=∠CFE;[变式思考]相等,理由如下:证明:∵AF为∠BAG的角平分线,∴∠GAF=∠DAF,∵∠CAE=∠GAF,∴∠CAE=∠DAF,∵CD为AB边上的高,∠ACB=90°,∴∠ADC=90°,∴∠ADF=∠ACE=90°,∴∠DAF+∠F=90°,∠E+∠CAE=90°,∴∠CEF=∠CFE;[探究延伸]∠M+∠CFE=90°,证明:∵C、A、G三点共线

AE、AN为角平分线,∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF=∠CFE,∴∠M+∠CFE=90°.【点睛】本题考查三角形的外角的性质,直角三角形两锐角互余,角平分线的有关证明,等角或同角的余角相等.在本题中用的比较多的是利用等角或同角的余角相等证明角相等和三角形一个外角等于与它不相邻的两个内角之和,理解并掌握是解决此题的关键.25.【探究1】∠2=∠ACB,90º-∠A;【探究2】∠BOC=90°﹣∠A,理由见解析;【应用】22.5°;【拓展】45°或36°.【分析】【探究1】根据角平分线的定义可得∠1=∠ABC,∠2=∠解析:【探究1】∠2=∠ACB,90º-∠A;【探究2】∠BOC=90°﹣∠A,理由见解析;【应用】22.5°;【拓展】45°或36°.【分析】【探究1】根据角平分线的定义可得∠1=∠ABC,∠2=∠ACB,根据三角形的内角和定理可得∠1+∠2=90º-∠A,再根据三角形的内角和定理即可得出结论;【探究2】如图2,由三角形的外角性质和角平分线的定义可得∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),然后再根据三角形的内角和定理即可得出结论;【应用】延长AC与BD,设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论