六年级上册数学应用题期末试卷训练经典题目_第1页
六年级上册数学应用题期末试卷训练经典题目_第2页
六年级上册数学应用题期末试卷训练经典题目_第3页
六年级上册数学应用题期末试卷训练经典题目_第4页
六年级上册数学应用题期末试卷训练经典题目_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

六年级上册数学应用题期末试卷训练经典题目(4)一、六年级数学上册应用题解答题1.一辆大巴从广州开往韶关,行了一段路程后,离韶关还有210千米,接着又行了全程的,这时已行路程与未行路程的比是。广州到韶关两地相距多少千米?(用方程解)2.下图是由两个正方形和一个圆组成的,已知大正方形的面积是,那么阴影部分的面积是多少?(圆周率取3.14)3.如图是光明小学的运动场的示意图,阴影部分为跑道.求跑道的占地面积.4.如图,用两个完全相同的正方形拼成一个长方形,图1是在长方形内所作的最大半圆,图2是长方形外的最小半圆。我们知道:①图1中,长方形的面积与半圆的面积比为。②图2中,半圆的面积与长方形的面积比为。请从上面两个结论中选择一个,写出你的证明过程。5.(1)某大酒店里有一种方圆两用餐桌(即外圆中方)。请你借助圆规等学具,选择相对合理数据画出这种方圆两用桌的桌面模形(要保留作图痕迹),并将正方形外的部分涂上阴影。(提示:在圆中画一个最大的正方形)(2)如果圆桌的直径是1米,那么图中阴影部分的面积是多少平方米?6.六年级举行体操和拔河比赛,参赛人数占全年级的40%,参加体操比赛的占参赛总人数的,参加拔河比赛的占参赛总人数的,两项都参加的有12人,全年级共有多少人?7.列出综合算式,不计算。一根电线先截去它的40%,还剩下12米,再截去多少米后,这时正好剩下这根电线全长的?8.4月23日是世界读书日,每年的这一天,世界上百多个国家都会举办各种各样的庆祝和图书宣传活动。某书店这天在图书定价的基础上降价20%出售某种图书,售价每本19.2元。已知该图书的进价为图书定价的50%,则降价后每卖一本书可以盈利多少元?9.世界卫生组织推荐的成人标准体重的计算方法是:男性:标准体重女性:标准体重下表是体重的评价标准:实际体重比标准体重轻(重)的百分比轻20%以上轻11%~20%轻10%~重10%重11%~20%重20%以上等级消瘦偏瘦正常偏胖肥胖(1)吴阿姨身高158,体重50。请你通过计算说明她的体重等级。(2)杜叔叔身高170,体重至少减掉10才算是“正常”体重,杜叔叔现在的体重是多少?10.最佳方案。一辆小汽车与一辆大卡车在一段10000米长的狭路上相遇,必须倒车,才能继续通行。已知小汽车的速度是每分钟行800米,大卡车的速度是每分钟行500米,两车倒车的速度是各自速度的;小汽车需倒车的路程是大卡车需倒车的路程的4倍。想想你觉得怎样倒车比较合理?说出你的理由?11.佳惠超市按商品标价的80%进行促销。光明小学在此超市按促销价购买了200支钢笔,共付2040元。(1)每支钢笔的标价是多少元?(2)如果每支钢笔超市的进价是8.5元,问超市是在进价基础上加价百分之几将这200支钢笔卖给光明小学的?12.一本故事书有180页,小红第一天看了全书的.(1)如果第二天看的相当于第一天的,第二天看了多少页?(2)如果第一天与第二天看的页数比是5:4,第二天看了多少页?(3)如果第二天看了全书的,第二天比第一天多看多少页?13.有甲、乙两列火车,乙车的速度比甲车速度慢。乙车先从站出发开往站行驶到距离站72千米处时,甲车从站出发开往站,相遇时,甲、乙两列火车行的路程之比是3∶4。(1)甲、乙两列火车的速度比是()∶();(2)、两站之间的路程是多少千米?14.果园里有500棵果树,其中苹果树和梨树占总数的40%,其余的是桃树和杏树,桃树和杏树的比是3:2。杏树有多少棵?15.电子厂原有工人450人,其中女工占36%。因为生产需要又招进一批女工,这时女工人数占全厂工人总数的40%。又招进女工多少人?16.学校要买48支钢笔,每支10元。三个商店有不同的出售方案。甲商店:买5支送1支;乙商店:一律九折;丙商店:满500元八折优惠。学校去哪个商店买合算?17.如图,第二个图形是由第一个图形连接三边中点而得到的,第三个图形是由第二个图形中间的一个三角形连接三边中点而得到的,以此类推……分别写出第二个图形、第三个图形和第四个图形中的三角形个数.如果第n个图形中的三角形个数为8057,n是多少?18.观察算式的规律:,,,,……。用含字母的式子表示规律:(________)。用规律计算:(________)。19.海安某步行街要铺设一条人行道,人行道长400米,宽1.6米。现在用边长都是0.4米的红、黄两种正方形地砖铺设(如图是铺设的局部图示)。(1)请帮忙算一算,铺设这条人行道一共需多少块地砖?(不计损耗)(2)铺设这条人行道一共需要多少块红色地砖?(不计损耗)20.二进制时钟是一种“特殊的时钟”,它用4行6列24盏灯来表示时间(图1)竖着看,从左到右每两列为一组,每列依次表示时、分、秒的十位数字和个位数字;每列从下往上的灯依次表示1、2、4、8(表示灯亮,○表示灯熄灭,灯灭代表0),同一列中多盏灯同时亮,要把它们各自表示的数加起来得到对应的数。例如,图1中最右侧一列,从下往上第一、二、三盏灯是,分别表示数字1、2、4,1+2+4=7,此时这列灯表示数字7,按照这样的表示方法,请在图2的括号里写出此时时钟表示的时刻。图3是雯雯同学上午进入校门的时刻,请涂出二进制时钟上的显示。21.某车间为了能高质量准时完成一批齿轮订单,对车间工人提前进行了加工齿轮效率的测试,经过统计测算,平均每个工人加工齿轮效率情况如图。(1)加工小齿轮的效率比大齿轮高百分之几?(2)已知这个车间有工人68人,1个大齿轮和3个小齿轮配为一套,为了使大小齿轮能成套出厂,如果你是车间主任,怎样合理安排这68名工人?请具体说明理由。22.公园里有一个圆形花圃(如图),直径20米,花圃中的绿地面积是254.34平方米,花圃中石子路的宽度是多少米?<5分>23.生命在于运动。为了进一步提高全体同学的身体素质,拥有健康强杜的体魄,东华小学开展了“天天晨跑”活动。陈刚共跑了,张华所跑路程是陈刚所跑路程的还多。张华共跑了多少?24.甲、乙两车同时从A、B两地出发,相向而行,经过5小时相遇,相遇后两车又行驶了3小时,这时甲车离B地还有230千米,乙车离A地还有160千米,求A、B两地的距离是多少千米?25.涛涛读一本故事书,第一天读了这本书的,第二天读了这本书的,这时还剩95页没有读。这本故事书共有多少页?26.依依从家去外婆家,第一个小时走了全程的,第二个小时走了剩下路程的,已知第一个小时比第二个小时多走了1050米,依依家与外婆家相距多少千米?27.操场上有108名同学在锻炼身体,其中女生占,后来又来了几名女生,这时女生人数占,后来又来了几名女生?28.一个书架上下两层共有图书450本,如果将上层书增加它的,下层书增加它的,这时上、下两层图书的本数就一样多.这个书架原来上、下层各有图书多少本?29.一份稿件,甲5小时先打了,乙6小时又打了剩下稿件的,最后剩下的一些由甲、乙两人合打,还需多少小时完成?30.根据大数据显示,荔波2016年旅游接待迅速升温,各旅游景区(点)游人如织.全县全年接待游客超700万人,其中大、小七孔景区共接待了游客人数的,小七孔景区比大七孔景区多接待游客,大、小七孔景区各全年接待了游客多少万人?31.下图中,以圆的半径为边长的正方形的面积是75平方厘米.求圆的面积.32.甲、乙二人同时从A地走向B地,当甲走了全程的时,乙走了全程的;当甲离B地还有时,乙离B地还有50米,A、B两地相距多少米?33.如图所示为一卷紧绕成的牛皮纸,纸卷直径为20厘米,中间有一直径为6厘米的卷轴.已知纸的厚度为0.4毫米,问:这卷纸展开后大约有多少米?(保留小数点后一位)34.如图,长方形的长AD与宽AB的比为5∶3,E、F为AB边上的三等分点,某时刻,甲从A点出发沿长方形逆时针运动,与此同时,乙、丙分别从E、F出发沿长方形顺时针运动。甲、乙、丙三人的速度比为4∶3∶5,他们出发后12分钟,三人所在位置的点的连线第一次构成长方形中最大的三角形,那么再过多少分钟,三人所在位置的点的连线第二次构成最大三角形?35.将一堆书本计划全部分给甲、乙、丙三个小朋友。原计划甲、乙、丙三人所得书本数之比为5∶4∶3。实际上,甲、乙、丙三人所得书本数之比为7∶6∶5,其中有一位小朋友比原计划少得了3本书。那么这位小朋友是谁?他实际得到书本是多少本?36.甲乙两城相距450千米,两辆汽车同时从甲乙两城相对开出,3小时后相遇,已知快车与慢车的速度比是,那么快车比慢车总共多行驶了多少千米?37.王叔叔12月份接到加工一批零件的任务,他第一周加工后,已加工零件个数和剩下零件个数的比是1∶3,第二周加工了总任务的,已知两周一共加工了140个零件。王叔叔接到的任务是一共要加工多少个零件?38.用一根240厘米的铁丝制作成一个长方体框架,长、宽、高的比是5∶3∶4,求这个长方体框架的体积是多少立方厘米?39.张师傅,王师傅,李师傅和孙师傅合做一批零件,张师傅做的个数与其他三人零件总数比是1:4,王师傅做的个数与其他三人零件总数比是2:3,李师傅做的个数与其余三人零件总数比是3:5,孙师傅做了90个零件.张师傅做了多少个零件?40.甲、乙两车同时从A、B两地相对开出,相遇后继续前进,当两车又相距70千米时,甲行驶了全程的75%,乙离A地的路程与已行驶的路程比是1∶2,A、B两地相距多少千米?41.图中,三角形的面积是8平方厘米,求涂色部分的面积。42.商场有两台冰箱,标价都是4950元,其中一台比进价贵10%,另一台比进价便宜10%,如果两台冰箱全部卖出,那么总体来讲是赚了还是赔了?如果赚了,赚了多少元?如果赔了,赔了多少元?43.有一座四层楼房,每个窗户的4块玻璃分别涂上红色和白色,每个窗户代表一个数字,每层楼有三个窗户,由左向右表示一个三位数,四个楼层表示的三位数有:791、275、362、612。问:第二层楼表示哪个三位数?44.探索规律.用小棒按照如图方式摆图形.(1)摆1个八边形需要根小棒,摆2个需要根小棒,摆3个需要根小棒.(2)照这样摆下去:①摆n个八边形需要多少根小棒?n=1000呢?②64根小棒可以摆多少个八边形?45.如图所示,两个圆周只有一个公共点,大圆直径为48厘米,小圆直径为30厘米,甲、乙两虫同时从点出发,甲虫以每秒0.5厘米的速度顺时针沿大圆圆周爬行,乙虫以同样速度顺时针沿小圆圆周爬行(本题取3)(1)问乙虫第一次爬回到点时,需要多少秒?(2)两虫沿各自圆周不间断地反复爬行,能否出现这样的情况:乙虫爬回到点时甲虫恰好爬到点?如果可能,求此时乙虫至少爬了几圈;如果不可能,请说明理由。46.教室里有甲、乙两盒粉笔,甲盒有40根粉笔,如果拿出它的放入乙盒,此时乙盒中的粉笔数还比甲盒少,乙盒原来有粉笔多少根?47.一项工程,甲队单独完成需要60天。若甲队先单独做18天,则剩余的甲、乙两队合作24天可以完成。乙队单独完成这项工程需要多少天?48.已知下面三个图中大正方形的边长相等。常常有人说,图中阴影部分的面积相等,但很少有人说清楚为什么。请根据你所学的知识证明这个结论,并且尽可能让你的理由充分一些,结论可信一些,说理过程清楚一些。49.某校参加数学竞赛的男生与女生的人数比是6∶5,后来又增加了5名女生,这时女生人数正好是全班的一半。原来参加数学竞赛的女生有多少人?50.商店购进一批自行车,购入价为每辆420元,卖出价为每辆500元,当卖出自行车的多20辆时,已获得全部成本,当自行车全部卖完时,共盈利多少元?【参考答案】***试卷处理标记,请不要删除一、六年级数学上册应用题解答题1.350千米【分析】分析题干,根据这时已行路程与未行路程的比是3∶

2,则未行路程占全程的,而全程的与全程的20%的和是210千米,可得到等量关系广州、韶关两地相距多少千米×(20%+)=210,据此列出方程解答即可。【详解】解:设广州到韶关两地相距千米。答:广州到韶关两地相距350千米。【点睛】本题考查列方程解决问题、百分数、比的意义,解答本题的关键是根据题意找到等量关系:广州、韶关两地相距多少千米×(20%+)=210。2.26平方厘米【分析】根据图意可得:阴影部分的面积=圆的面积-小正方形的面积,已知大正方形的面积是,36=6×6,即大正方形的边长是6cm,也正是圆的直径;小正方形的对角线的长度是6cm,小正方形的面积是6×6÷2=18(平方厘米)。据此解答即可。【详解】36=6×63.14×(6÷2)2-6×6÷2=3.14×9-18=28.26-18=10.26(平方厘米)答:阴影部分的面积是10.26平方厘米。【点睛】本题属于求圆与组合图形面积的问题,这种类型的题目主要明确组合图形是由哪些基本的图形构成的,然后看是求几种图形的面积和还是求面积差,然后根据面积公式解答即可。3.2750平方米【详解】60﹣10×2=60﹣20=40(米)50×10×2+3.14×[(60÷2)2﹣(40÷2)2]=1000+3.14×[900﹣400]=1000+3.14×500=1000+1750=2750(平方米)答:跑道的占地面积2750平方米.4.证明①,设正方形的边长为r,S长=2r×r=2r2,S半=πr2×=πr2,S长:S半=22:πr2=。证明②,设半圆的半径为r,S半=πr2,S长=πr2×4÷2=r2,S半:S长=πr2:r2=π。【详解】证明①,设正方形的边长为r,长方形的面积=长×宽,所以图中S长=2r×r=2r2,半圆的面积=πr2×,所以图中S半=πr2×=πr2,然后作比即可;证明②,设半圆的半径为r,半圆的面积=πr2×,所以图中S半=πr2,内长方形的面积=半圆的面积×4÷π,所以图中S长=πr2×4÷2=r2,然后作比即可。5.(1)(2)0.285平方米【详解】略6.200人【分析】设参加比赛总人数为x人,则参加体操比赛的有x人,参加拔河比赛的有x人,两项都参加的有12人。用参加体操的加上参加拔河的减去都参加的12人,得到参赛总人数。据此列方程解方程,求出参赛总人数,最后利用参赛总人数除以40%,得到全年级总人数。【详解】解:设参加比赛总人数为x人。x+x-12=xx+x-x=12x=12x=12÷x=8080÷40%=200(人)答:全年级共有200人。【点睛】本题考查了简易方程的应用,能根据题意正确列方程是解题的关键。7.【分析】根据题意可得,12米占这根电线总长度的,据此求出这根电线总长度。因为第二次截取的长度占这根电线长度的,最后求出第二次截取的长度即可。【详解】=20×0.35=7.5(米)答:需再截去7.5米,这时正好剩下这根电线全长的四分之一。【点睛】本题考查百分数,解答本题的关键是找准单位“1”。8.2元【分析】某书店这天在图书定价的基础上降价20%出售某种图书,说明售价是定价的1-20%=80%,每本19.2元,据此求出定价;书的进价为图书定价的50%,求出书的进价,最后求盈利即可。【详解】19.2-19.2÷(1-20%)×50%=19.2-12=7.2(元)答:降价后每卖一本书可以盈利7.2元。【点睛】本题考查百分数,解答本题的关键是理解定价、售价、进价之间的关系。9.(1)正常(2)79.3千克【分析】(1)吴阿姨是女性,根据(身高-70)×0.6=标准体重,先代入数据求出吴阿姨的标准体重,再求出吴阿姨的标准体重与其体重的差,用差除以标准体重,求出差占标准体重的百分之几,从而得出结论;(2)杜叔叔是男性,根据(身高-80)×0.7=标准体重,求出杜叔叔的标准体重,再加上10千克,就是杜叔叔现在的体重。【详解】(1)(158-70)×0.6=88×0.6=52.8(千克)(52.8-50)÷52.8=2.8÷52.8≈5.3%吴阿姨的体重比正常体重轻5.3%,属于正常范围。答:吴阿姨的体重等级是正常。(2)(170-80)×0.7=90×0.7=63(千克)63×(1+10%)+10=63×1.1+10=69.3+10=79.3(千克)答:杜叔叔现在的体重是79.3千克。【点睛】解决本题先理解题目给出的标准体重的计算方法,然后根据已知数量代入公式计算。10.大车倒车,理由见解析【分析】已知小汽车的速度是每分钟行800米,大卡车的速度是每分钟行500米,则两车倒车的速度比是800:500=8:5,又小汽车需倒车的路程是大卡车需倒车的路程的4倍,即路程比是4:1,则大车倒回需要时间为,小车需要,比较即可得出结论。【详解】两车倒车的速度比是800:500=8:5,小车与大车倒车的路程比是4:1,=>。所以大车倒车用时少,所以大车倒车比较合理。【点睛】首先根据题意求出两车的速度比与路程比是完成本题的关键。11.(1)12.75元(2)20%【分析】(1)用总价除以钢笔数量,求出每支钢笔售价,再用每支钢笔的售价除以它占原标价的百分率,求出每支钢笔标价;(2)先算出每支钢笔的售价,再用售价比进价多的部分除以进价,求出超市是在进价基础上加价百分之几将这200支钢笔卖给光明小学的。【详解】(1)2040÷200÷80%=10.2÷80%=12.75(元)答:每支钢笔的标价是12.75元。(2)(2040÷200-8.5)÷8.5=1.7÷8.5=20%答:超市是在进价基础上加价百分之二十将这200支钢笔卖给光明小学的。【点睛】本题考查百分数,解答本题的关键是理解按80%进行促销是指售价占标价的百分之八十。12.(1)25页(2)24页(3)30页【解析】【详解】(1)180××=30×=25(页)答:第二天看了25页.(2)180××=30×=24(页)答:第二天看了24页.(3)180×(﹣)=180×=30(页)答:第二比第一天多看30页.13.(1)5;4(2)315千米【分析】(1)甲车速度是单位“1”,乙车的速度比甲车速度慢,甲车速度看作100,乙车速度是100-20,写出速度比化简即可。(2)路程比=速度比,设相遇时甲行驶的路程是千米,乙车形式的路程是千米,根据甲车和乙车的路程比=甲车和乙车的时间比,列出方程求出甲车行驶路程,相遇时,甲、乙两列火车行的路程之比是3∶4,甲车行驶了路程的,用甲车路程÷对应分率=、两站之间的路程。【详解】(1)100∶(100-20)=100∶80=5∶4(2)解:设相遇时甲行驶的路程是千米。3+4=7(千米)答:、两站之间的路程是315千米。【点睛】本题考查了百分数和比的意义,列方程解决问题和按比例分配应用题,较为综合,关键是理解速度、时间、路程之间的关系以及比的意义。14.120棵【详解】500×(1-40%)×[2÷(3+2)]=120(棵)15.30人【详解】450×(1-36%)÷(1-40%)-450=30(人)答:又招进女工30人。16.丙店【解析】【详解】甲商店:48÷(5+1)=8(支)(48-8)×10=40×10=400(元)乙商店:10×90%×48=432(元)丙商店:可买50支以达到优惠要求.50×10×80%=400(元)432>400由此可以发现,乙店花钱最多,甲乙两店虽然各花了400元,但是丙店多买了两支,所以到丙店最合算.17.解:第一个图形中三角形个数:1个;第二个图形中三角形个数:1×4+1=5(个);第三个图形中三角形个数:2×4+1=9(个);第四个图形中三角形个数:3×4+1=13(个);第n个图形中三角形个数:(n-1)×4+1=(4n-3)(个)4n-3=8057,n=2015.答:n是第2015个图形.【解析】【详解】由已知图形中三角形个数推出三角形个数与图形个数之间的数量关系式,再根据题意代入数据计算即可解答.18.n2−(n−1)2=n+n+1210【分析】观察题目给出的算式,发现前一个数都比后一个数大1,而且前一个数的平方减去后一个数的平方最终等于前数加后数,由此可得到规律。【详解】(1)n2−(n−1)2=n+n+1(2)=20+19+18+17+……+2+1=20×10+10=200+10=210【点睛】本题考查学生的观察能力,找到规律然后利用规律是解题的关键。19.(1)4000块;(2)1000块【分析】(1)利用长方形面积公式:S=ab,计算人行道的面积,然后用人行道的面积除以每块地砖的面积,就是所需块数。(2)根据图形的排列规律,每4×4=16(块)方砖中,有4块是红色的,求所需地砖块数包含几个16,再乘4,计算所需红色地砖的块数即可。【详解】(1)400×1.6÷(0.4×0.4)=640÷0.16=4000(块)答:铺设这条人行道一共需4000块地砖。(2)4000÷16×4=250×4=1000(块)答:铺设这条人行道一共需要1000块红色地砖。【点睛】本题主要考查数与形结合的规律,关键是根据图示发现地砖排列的规律。20.图2(19:47:26);图3【分析】(1)同一列中多盏灯同时亮,要把它们各自表示的数加起来得到对应的数,注意灯灭表示0,那么图2左侧第1列代表1,第2列代表1+8=9,也就是19时;第3列表示4,第4列表示1+2+4=7,也就是47分;第5列表示2,第6列表示2+4=6,也就是26秒;(2)图3是左侧第1列是0,所以不涂;第2列是7,从下往上涂代表数字1、2、4的灯亮;第3列代表数字4的灯亮,其它灯灭;第4列代表数字1、8的灯亮;第5列代表数字1、4的灯亮,其它灯灭;第6列代表数字2、4的灯亮,其它灯灭。【详解】据分析可得,图2代表(19:47:26);图3是:故答案为:图2(19:47:26);图3是。【点睛】本题考查数与形,解答本题的关键就是理解同一列中多盏灯同时亮,要把它们各自表示的数加起来得到对应的数的概念。21.(1)25%(2)20名工人生产大齿轮,48名工人生产小齿轮,理由见详解【分析】(1)工作总量比=工作效率比,用工作总量差÷大齿轮工作总量即可;(2)先求出每人每天加工小齿轮和大齿轮的个数,设加工小齿轮的人数是x人,则加工大齿轮的人数为(68-x),根据每人每天加工大齿轮的个数×人数=每人每天加工小齿轮的个数×人数÷3,列出方程求出加工小齿轮人数,总人数-加工小齿轮人数=加工大齿轮人数。【详解】(1)(50-40)÷40=10÷40=25%答:加工小齿轮的效率比大齿轮高25%。(2)每人每天加工小齿轮的个数:50÷5=10(个)每人每天加工大齿轮的个数:40÷5=8(个)解:设加工小齿轮的人数是x人,则加工大齿轮的人数为(68-x)。8×(68-x)=10×x÷31632-24x=10x34x=1632x=48加工大齿轮的人数是:68-x=68-48=20(人);答:20名工人生产大齿轮,48名工人生产小齿轮。【点睛】求比一个数多/少百分之几用表示单位“1”的量作除数,用方程解决问题关键是找到等量关系。22.1米【详解】254.34÷3.14=81(平方米)因为9×9=81所以绿地的半径是9米。<2分>20÷2-9=1(米)<3分>答:花圃中石子路的宽度是1米。考察学生对圆环面积以及其内圆半径和外圆半径之间关系的理解,从而找到正确的突破口进行解答。23.【分析】张华所跑路程是陈刚所跑路程的五分之四还多8km,先用乘法求出陈刚所跑路程的五分之四是多少,再加上8千米就是张华共跑的路程,据此解答即可。【详解】=48+8=56(千米)答:张华共跑了56千米。【点睛】本题考查分数乘法,解答本题的关键是掌握分数乘法的计算方法。24.975千米【分析】根据题意,甲、乙两车5小时行完全程,则两车每小时共行全程的。相遇后两车又行驶了3小时,行驶了全程的。把全程看作单位“1”,则两车剩下的路程共占全程的(1-),用两车剩下的路程之和除以(1-)即可求出全程。【详解】×3=(230+160)÷(1-)=390÷=975(千米)答:A、B两地的距离是975千米。【点睛】已知一个数的几分之几是多少,求这个数,用除法计算。明确“两车每小时共行全程的”和“两车剩下的路程共占全程的(1-)”是解题的关键。25.150页【分析】第一天读了这本书的,第二天读了这本书的,都是以这本书为单位“1”,那么还剩下这本书的,量率对应求单位“1”。【详解】(页)答:这本故事书共有150页。【点睛】本题考查的是分数除法应用题,在用量率对应求单位“1”时,量和分率一定要相互对应。26.8千米【分析】第二个小时走了剩下路程的,也就是的,求出第一个小时比第二个小时多走了1050米相当于是全程的,量率对应求出依依家与外婆家的距离。【详解】(米)4800米=4.8千米答:依依家与外婆家相距4.8千米。【点睛】本题考查的是分数除法应用题,一个量除以其所占单位“1”的分率,求得单位“1”是多少。27.12名【分析】原来108名同学看作单位”1”,根据乘法求出原来男生的人数,再把后来一共的同学看作单位“1“,则原来男生人数占现在人数的,根据已知一个数的几分之几是多少求这个数用除法,求出现在的学生数,再进一步得出结论。【详解】原来男生人数:(名)后来学生总数:(名)(名)答:后来又来了12名女生。【点评】明确这一过程中男生人数没有变,根据前后男生占总人数的分率列出等量关系式是完成本题的关键。28.上层200本,下层250本【详解】解:设上层书架原有x本书,则下层书架原有(450﹣x)本,得(1+)x=(450﹣x)×(1+)x=(450﹣x)×x=585﹣xx=585x=200450﹣200=250(本)答:原来上层书架有图书200本、下层书架有图书250本.29.小时【分析】将整份稿件看作整体“1”,甲5小时打了,所以甲的工作效率是:;乙6小时打了剩下稿件的,即的,所以乙的工作效率是:。最后甲乙两人合打的工作量也是的,工作效率是两人的工作效率之和,然后再根据“工作时间=工作总量÷工作效率”来计算他们所需要的时间。【详解】(小时)答:还需小时完成。【点睛】本题考查工程问题,找到甲乙两人的工作效率非常关键。30.大七孔景区全年接待了游客250万人,小七孔景区全年接待了游客350万人【解析】【详解】700×=600(万人)600÷(1++1)=600÷=250(万人)600﹣250=350(万人)答:大七孔景区全年接待了游客250万人,小七孔景区全年接待了游客350万人31.5【详解】32.米【详解】相同时间内:甲乙的速度比就是:=25:21;乙的速度就是甲的,相同时间内,已走的路程就是甲的1﹣=×=50÷(1﹣)=50÷=(米)答:A、B两地相距米.33.4米【详解】20÷2=10(厘米)6÷2=3(厘米)0.4毫米=0.04厘米3.14×(102﹣32)÷0.04=3.14×(100﹣9)÷0.04=3.14×91÷0.04=7143.5(厘米)7143.5厘米≈71.4米答:这卷纸展开后大约有71.4米.34.28分【分析】长方形内最大的三角形等于长方形面积的一半,这样的三角形一定有一条边与长方形的某条边重合,且另一个顶点恰好在该长方形的对边上。所以只要讨论三人中有两个人在长方形的顶点上的情况,因为长方形的长AD与宽AB的比为5∶3,所以将长方形的长5等份,宽3等份,将其周长分为16段,又因为甲、乙、丙三人的速度比为4∶3∶5,所以他们所行的路程比也是4∶3∶5,设甲走4段用1个单位时间,那么一个单位时间内乙、丙分别走3段、5段,由于4、3、5两两互质,所以在非整数单位时间内甲、乙、丙三人最多有一人走了整数段,所以只考虑整数单位时间。然后对到达顶点的情况一一列举即可,得到满足条件的单位时间点,再根据第一次构成长方形中最大的三角形的时间是12分钟,从而求出一个单位时间相当于多少分钟,根据列表知道第二次构成最大三角形需要几个时间单位,求出再过多少分钟,三人所在位置的点的连线第二次构成最大三角形,据此解答。【详解】根据分析将长方形的长为5等份,宽为3等份,那么长方形的周长为16段,设甲走4段用1个单位时间,那么一个单位时间内乙、丙分别走3段、5段,根据分析又知道只有整数单位时间才符合题意,所以只考虑整数单位时间,所以三人到达顶点的情况列表如下:甲单位时间246810121416……地点CACACACC……乙单位时间23101118192627……地点DCBADCBA……丙单位时间23101118192627……地点CBADCBAD……通过列表可知2个单位时间时,甲和丙重合,不满足条件,3个单位时间时,甲在AD上,三人第一次构成最大的三角形,所以一个单位时间为12÷3=4(分);10个单位时间的时候甲、乙、丙分别在C、B、A点上,第二次构成最大的三角形,4×10-12=40-12=28(分)答:再过28分钟,三人所在位置的点的连线第二次构成最大三角形。【点睛】此题考查的是行程问题,解题的关键是理解长方形内最大的三角形等于长方形面积的一半。35.甲;42本【分析】将全部书看作单位“1”,先算出甲、乙、丙三人按原计划和实际所得书本数占全部书的分率,比较前后分率,谁的分率变少,这位小朋友就是谁;用少得的本数÷减少的分率求出总本数,总本数×实际所得本数分率=实际得到的本数。【详解】原计划:甲:5÷(5+4+3)=5÷12=乙:4÷12=丙:3÷12=实际:甲:7÷(7+6+5)=7÷18=乙:6÷18=丙:5÷18=>,<,甲的分率变小。3÷(-)=3÷=108(本)108×=42(本)答:少得3本书的是甲小朋友,他实际得到书本是42本。【点睛】关键是理解比意义,确定单位“1”,通过分率的变化确定变少的小朋友,部分数量÷对应分率=整体数量,整体数量×部分对应分率=部分数量。36.90千米【分析】根据题意,3小时相遇,可以根据总路程除以3,即可求得两辆汽车的速度和。再根据速度比是,计算出两车行驶的路程,求差即可。【详解】450÷3=150(千米)150×=90(千米);90×3=270(千米)150×=60(千米);60×3=180(千米)270-180=90(千米)答:快车比慢车总共多行驶了90千米。【点睛】本题也可以根据比例知识求解:速度比是,则相同时间内行驶的路程比也是。37.240个【分析】根据条件“他第一周加工后,已加工零件个数和剩下零件个数的比是1∶3”可知,第一周完成的占全部任务的=,然后用两周一共加工的零件总个数÷两周一共加工的占总个数的分率=要加工的零件总个数,据此列式解答。【详解】第一周完成了=140÷(+)=140÷=140×=240(个)答:王叔叔接到的任务是一共要加工240个零件。【点睛】题目中不易理解的一句话是“他第一周加工后,已加工零件个数和剩下零件个数的比是1∶3”,我们需要依据比与分数的关系,把它转化成一个表示第一周完成的零件个数占零件总数的分率。38.7500立方厘米【分析】这是求长方体体积的题目,240厘米是这个长方体的总棱长,长方体有4条长、4条宽、4条高,用240÷4=60(厘米),这是1条长+1条宽+1条高的和,再把60厘米进行按比分配,求出长方体的长、宽、高,再根据长方体的体积公式求出长方体的体积即可。【详解】240÷4=60(厘米)60×=25(厘米)60×=15(厘米)60×=20(厘米)25×15×20=375×20=7500(立方厘米)答:这个长方体框架的体积是7500立方厘米。【点睛】本题考查按比分配问题,明确长、宽、高的比是5∶3∶4分配的总量指的是1条长+1条宽+1条高的和是解题的关键。39.720个【详解】90÷(1﹣﹣﹣)×=90÷(1﹣﹣﹣)×=90÷×=3600×=720(个);答:张师傅做了720个零件.40.168千米【分析】此题可以画线段图来帮助理解:乙离A地的路程与已行路程的比为1:2,也就是乙离A地的路程占全程的,已知甲行了75%,由图意可知,70千米占全长的(75%-),由此列式解决问题。【详解】70÷(75%-)=70÷(-)=70÷=168(千米)答:A、B两地相距168千米。【点睛】此题主要考查学生运用行程问题的基本知识,解答较复杂的行程问题的能力。在解答此题时,关键是要找出70千米所占全程的分率。41.68平方厘米【分析】涂色部分的面积,相当于是圆面积的,三角形的底和高恰好都是半径,三角形面积是半径的平方除以2,可以求出半径的平方,进而求得圆的面积。【详解】半径的平方:(平方厘米)圆的面积:(平方厘米)涂色部分的面积:(平方厘米)答:涂色部分的面积是37.68平方厘米。【点睛】本题用到了整体思想,求出半径的平方即可求圆的面积,无需计算半径。42.赔了,赔了100元【详解】略63.电视机厂八月份生产一批电视机,上旬生产了20%,中旬比上旬多生产43台,下旬生产了80台电视机,则电视机厂八月份共生产了多少台电视机?205台【详解】(43+80)÷(1-20%-20%)=205(台)答:电视机厂八月份共生产了205台电视机。43.612【分析】给出的四个数中362和612的个位数字相同,第二和第四层右边窗户符号也相同,可以肯定这两层分别代表362和612。这两个数中又有数字6是一样的,对照第二层和第四层的窗户,可以确定第二层代表6

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论