版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学初中苏教七年级下册期末模拟题目经典解析一、选择题1.下列运算正确的是()A.a2·a3=a6 B.(a2)3=a5 C.(2a)2=2a2 D.a3÷a2=a2.如图,和不是同位角的是()A. B. C. D.3.下列各数是不等式2x+1>3的解的是()A.-3 B.0 C.1 D.34.若,,则与的大小关系是()A. B. C. D.由的取值而定5.对于任意实数m,n,我们把这两个中较小的数记作min{m,n},如min{1,2}=1.若关于x的不等式min{1-2x,-3}>m无解,则m的取值范围是().A.m≤-3. B.m≤2. C.m≥-3. D.m≥2.6.下列命题中,是真命题的是()A.三角形的一条角平分线将三角形的面积平分B.同位角相等C.如果a2=b2,那么a=bD.是完全平方式7.设一列数中任意三个相邻的数之和都是20,已知,那么的值是()A.4 B.5 C.8 D.118.若△ABC内有一个点P1,当P1、A、B、C没有任何三点在同一直线上时,如图1,可构成3个互不重叠的小三角形;若△ABC内有两个点P1、P2,其它条件不变,如图2,可构成5个互不重叠的小三角形:……若△ABC内有n个点,其它条件不变,则构成若干个互不重叠的小三角形,这些小三角形的内角和为()A.n·180° B.(n+2)·180° C.(2n-1)·180° D.(2n+1)·180°二、填空题9.计算:2x2y•(﹣xy)2=_____.10.下列三个命题:①对顶角相等;②同旁内角互补;③两直线平行,同位角相等.其中是假命题的有_____.(填序号)11.若一个n边形的内角和与外角和为720°,则n=________.12.如图,有三种卡片,其中边长为的正方形卡片1张,长为、宽为的长方形卡片4张,边长为的正方形卡片4张,用这9张卡片刚好能拼成一个大正方形,则这个大正方形的边长为_____.13.若关于的二元一次方程组的解也是二元一次方程的解;则的值是______14.如图所示,大长方形的长为8cm,宽为4cm,则阴影部分的面积是________.15.一幅图案在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个正六边形和正十二边形,则第三个多边形的边数是__________.16.如图,点E是正方形ABCD的边AD延长线上一点,正方形ABCD的边长为6cm,点F是线段BE的中点,△BFC的面积是______________cm².17.计算或化简.(1)(2)(3)18.因式分解(1)(2)19.解方程组(1)(2)20.解方程(或不等式)组:(1)(2)三、解答题21.如图,∠1=60°,∠2=120°,∠A=∠D.探索∠C与∠DEC的数量关系,并说明理由.22.嘉嘉坚持每天做运动.已知某两组运动都由波比跳和深蹲组成,每个波比跳耗时5秒,每个深蹲也耗时5秒.运动软件显示,完成第一组运动,嘉嘉做了20个波比跳和40个深蹲,共消耗热量132大卡;完成第二组运动,嘉嘉做了20个波比跳和70个深蹲,共消耗热量156大卡.每个动作之间的衔接时间忽略不计.(1)每个波比跳和每个深蹲各消耗热量多少大卡?(2)若嘉嘉只做波比跳和深蹲两个动作,花10分钟,消耗至少200大卡,嘉嘉至少要做多少个波比跳?23.若任意一个代数式,在给定的范围内求得的最大值和最小值恰好也在该范围内,则称这个代数式是这个范围的“湘一代数式”.例如:关于x的代数式,当1x1时,代数式在x1时有最大值,最大值为1;在x0时有最小值,最小值为0,此时最值1,0均在1x1这个范围内,则称代数式是1x1的“湘一代数式”.(1)若关于的代数式,当时,取得的最大值为,最小值为,所以代数式(填“是”或“不是”)的“湘一代数式”.(2)若关于的代数式是的“湘一代数式”,求a的最大值与最小值.(3)若关于的代数式是的“湘一代数式”,求m的取值范围.24.模型与应用.(模型)(1)如图①,已知AB∥CD,求证∠1+∠MEN+∠2=360°.(应用)(2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为.如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为.(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1O与∠CMnMn-1的角平分线MnO交于点O,若∠M1OMn=m°.在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度数.(用含m、n的代数式表示)25.问题1:现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.(1)探究1:如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是;(2)探究2:如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是;(3)探究3:如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.(4)问题2:将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是.【参考答案】一、选择题1.D解析:D【分析】根据同底数幂的乘除法、幂的乘方、积的乘方的运算法则,对各选项计算后利用排除法求解.【详解】解:A、a2•a3=a5,原计算错误,故此选项不符合题意;B、(a2)3=a6,原计算错误,故此选项不符合题意;C、(2a)2=4a2,原计算错误,故此选项不符合题意;D、a3÷a2=a,原计算正确,故此选项符合题意;故选:D.【点睛】本题考查了整式的运算,熟练掌握运算性质和法则是解题的关键.2.C解析:C【分析】根据同位角定义可得答案.【详解】解:A、∠1和∠2是同位角,故此选项不符合题意;B、∠1和∠2是同位角,故此选项不符合题意;C、∠1和∠2不是同位角,故此选项符合题意;D、∠1和∠2是同位角,故此选项不符合题意;故选C.【点睛】本题考查同位角的概念.解题的关键是掌握同位角的概念,是需要熟记的内容.即两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.3.D解析:D【分析】首先解不等式,然后判断各个选项是否是不等式的解即可.【详解】解:移项,得:2x>3-1,则x>1则是不等式的解集为x>1.故选D.【点睛】本题考查了解一元一次不等式,解题的关键在于能够准确解出不等式的解集.4.A解析:A【分析】求出P与Q的差,即可比较P、Q的大小.【详解】解:,,,故选:A.【点睛】本题主要考查整式的运算,作差比较大小是解题的关键.5.C解析:C【分析】根据新定义运算法则分情况讨论1-2x与-3的大小及min{1-2x,-3}的值,通过min{1-2x,-3}>m求解m的范围.【详解】解:令由题意可得:当即时,,当即时,,∵,即无解,∴,故选:C.【点睛】本题考查了新定义下解一元一次不等式,明白新定义的运算法则是解题的关键.6.D解析:D【分析】利用三角形的中线的性质、平行线的性质、实数的性质及完全平方式的定义分别判断后即可确定正确的选项.【详解】解:A、三角形的一条角中线将三角形的面积平分,故错误,是假命题;B、两直线平行,同位角相等,故错误,是假命题;C、如果a2=b2,那么a=±b,故错误,是假命题;D,D.=,是完全平方式,正确,是真命题,故选:D.【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形的中线的性质、平行线的性质、实数的性质及完全平方式的定义,难度不大.7.A解析:A【分析】由题可知,a1,a2,a3每三个循环一次,可得a18=a3,a64=a1,所以6-x=-6x+11,即可求a2=4,a3=11,a1=5,再由2021除以3的余数可得结果.【详解】解:由题可知,a1+a2+a3=a2+a3+a4,∴a1=a4,∵a2+a3+a4=a3+a4+a5,∴a2=a5,∵a4+a5+a6=a3+a4+a5,∴a3=a6,…∴a1,a2,a3每三个循环一次,∵18÷3=6,∴a18=a3,∵64÷3=21…1,∴a64=a1,∴a1=20-4x-(9+2x)=-6x+11,∴6-x=-6x+11,解得:x=1,∴a2=4,a3=11,a1=5,∵2021÷3=673…2,∴a2021=a2=4,故选A.【点睛】本题主要考查规律型:数字的变化类,能够通过所给例子,找到式子的规律,利用有理数的运算解题是关键.8.D解析:D【分析】当△ABC内的点的个数是1时,三角形内互不重叠的小三角形的个数是3;当△ABC内的点的个数是2时,三角形内互不重叠的小三角形的个数是5;依此类推得到当△ABC内的点的个数是3时,三角形内互不重叠的小三角形的个数是7;当△ABC内的点的个数是n时,三角形内互不重叠的小三角形的个数2n+1,所以这些小三角形的内角和为(2n+1)·180°【详解】】解:图1中,当△ABC内只有1个点时,可分割成3个互不重叠的小三角形;图2中,当△ABC内只有2个点时,可分割成5个互不重叠的小三角形;图3中,当△ABC内只有3个点时,可分割成7个互不重叠的小三角形;根据以上规律,当△ABC内有n个点(P1,P2,…,Pn)时,可以把△ABC分割成S=2n+1个互不重叠的三角形,所以这些小三角形的内角和为(2n+1)·180°.【点睛】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.二、填空题9.2x4y3【分析】先计算积的乘方,再计算同底数幂的乘法即可得出答案.【详解】解:2x2y•(﹣xy)2=2x2y•x2y2=2x4y3故答案为:2x4y3.【点睛】本题主要考查单项式乘单项式,也考查了积的乘方和同底数幂的乘法,难度较低,重点掌握整式的乘法的运算顺序是解题的关键.10.②【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:①对顶角相等,是真命题;②两直线平行,同旁内角互补,原命题是假命题;③两直线平行,同位角相等,是真命题;故答案为:②.【点睛】本题考查命题的判断,对顶角的性质,平行线的性质,熟记各类定理是解题的关键.11.4【分析】任意多边形的外角和是360度,即这个多边形的内角和是360度.n边形的内角和是(n-2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】解:根据题意,得(n-2)•180+360=720,解得n=4.故答案为:4.【点睛】本题考查了多边形的内角和和外角和,属于基础题型,熟练掌握多边形的基本知识是解题的关键.12.【分析】根据题意列出关系式,分解因式即可得正方形边长.【详解】解:根据题意得:,则这个正方形的边长为,故答案是:;【点睛】此题考查了因式分解的应用,熟练掌握完全平方公式和理解因式分解的方法是解本题的关键.13.-1【分析】把k看作已知数表示出方程组的解,代入已知方程计算即可得到k的值.【详解】①+②得:2x=6k,解得,x=3k,②-①得,2y=-2k,解得:y=-k代入2x-y=-7得,6k+k=-7解得,k=-1.故答案为:-1.【点睛】此题考查了二元一次方程组的解,以及解二元一次方程组.方程组的解即为能使方程组中两方程都成立的未知数的值.14.8cm2【分析】根据圆和长方形的轴对称性质可知,阴影部分的面积和正好等于长方形面积的四分之一.【详解】如图所示:根据题意可知,扇形1的面积等于扇形2的面积,所以1和3的面积和为矩形面积的八分之一,4和5的面积和同理为矩形面积的八分之一,故阴影部分的面积为长方形面积的,所以阴影部分的面积=×8×4=8.故答案是:8.【点睛】考查了运用割补的办法把不规则的阴影部分拼接成规则图形来求算面积的方法.解决本题的关键是要知道阴影部分的面积和正好等于长方形面积的四分之一.15.4【解析】【分析】正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明能进行平面镶嵌;反之,则说明不能进行平面镶嵌.【详解】解:由于正六边形和正十解析:4【解析】【分析】正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明能进行平面镶嵌;反之,则说明不能进行平面镶嵌.【详解】解:由于正六边形和正十二边形内角分别为120°、150°,∵360−(150+120)=90,又∵正方形内角为90°,∴第三个正多边形的边数是4.故答案为:4.【点睛】本题考查了平面镶嵌(密铺),几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.16.9【分析】先求出△BCE的面积,然后根据三角形中线的性质即可求出△BFC的面积.【详解】解:∵ABCD是正方形,∴CD=CB=AB=6cm,∠ABC=90°,∴S△BCE=cm2,∵解析:9【分析】先求出△BCE的面积,然后根据三角形中线的性质即可求出△BFC的面积.【详解】解:∵ABCD是正方形,∴CD=CB=AB=6cm,∠ABC=90°,∴S△BCE=cm2,∵F是线段BE的中点,∴S△BFC=S△BCE=9cm2.故答案为:9.【点睛】本题考查了正方形的性质,以及三角形中线的性质,熟练掌握三角形的中线把三角形分成面积相等的两个三角形是解答本题的关键.17.(1);(2);(3)【分析】(1)根据实数的性质化简即可求解;(2)根据幂的运算法则即可求解;(3)根据整式的加减运算法则即可求解.【详解】解:(1);(2)(3)原解析:(1);(2);(3)【分析】(1)根据实数的性质化简即可求解;(2)根据幂的运算法则即可求解;(3)根据整式的加减运算法则即可求解.【详解】解:(1);(2)(3)原式.【点睛】此题主要考查实数与整式的运算,解题的关键是熟知负指数幂的运算法则.18.(1);(2)【分析】(1)原式首先根据平方差公式分解,然后再根据完全平方公式再进行二次分解即可;(2)原式首先提取公因式(x-y),然后再根据平方差公式二次分解即可.【详解】解:(1)解析:(1);(2)【分析】(1)原式首先根据平方差公式分解,然后再根据完全平方公式再进行二次分解即可;(2)原式首先提取公因式(x-y),然后再根据平方差公式二次分解即可.【详解】解:(1)==(2)===【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.19.(1);(2)【分析】(1)利用代入消元法求解可得;(2)利用加减消元法求解可得.【详解】解:(1),将①代入②,得:,解得:,代入①中,解得:,所以方程组的解为;(2),①+解析:(1);(2)【分析】(1)利用代入消元法求解可得;(2)利用加减消元法求解可得.【详解】解:(1),将①代入②,得:,解得:,代入①中,解得:,所以方程组的解为;(2),①+②×2,得:,解得:,代入②中,解得:,所以方程组的解为.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.(1);(2)【分析】(1)直接利用加减消元法解二元一次方程组即可;(2)先求出每个不等式的解集,然后求出不等式组的解集即可.【详解】解:(1),把①+②×2得:解得,把代入①中解解析:(1);(2)【分析】(1)直接利用加减消元法解二元一次方程组即可;(2)先求出每个不等式的解集,然后求出不等式组的解集即可.【详解】解:(1),把①+②×2得:解得,把代入①中解得,∴方程组的解为:;(2),解不等式①得:,解不等式②得:,∴不等式组的解集为:.【点睛】本题主要考查了解二元一次方程组,解一元一次不等式组,解题的关键在于能够熟练掌握相关知识进行求解.三、解答题21.∠C=∠DEC,理由见解析【分析】根据∠1=60°,∠2=120°可得AEBD,进而可得∠A=∠DBC,再结合∠A=∠D,即可证得ACDE,最后根据平行线的性质即可求解.【详解】解:∠C=∠解析:∠C=∠DEC,理由见解析【分析】根据∠1=60°,∠2=120°可得AEBD,进而可得∠A=∠DBC,再结合∠A=∠D,即可证得ACDE,最后根据平行线的性质即可求解.【详解】解:∠C=∠DEC,理由如下:∵∠1=60°,∠2=120°,∴∠1+∠2=60°+120°=180°,∴AEBD,∴∠A=∠DBC,∵∠A=∠D,∴∠D=∠DBC,∴ACDE,∴∠C=∠DEC.【点睛】本题考查了平行线的性质和判定,要注意平行线的性质和判定的区别.22.(1)每个波比跳消耗热量5大卡,每个深蹲消耗热量0.8大卡;(2)嘉嘉至少要做25个波比跳.【分析】(1)设每个波比跳消耗热量x大卡,每个深蹲消耗热量y大卡,根据“完成第一组运动,嘉嘉做了20个解析:(1)每个波比跳消耗热量5大卡,每个深蹲消耗热量0.8大卡;(2)嘉嘉至少要做25个波比跳.【分析】(1)设每个波比跳消耗热量x大卡,每个深蹲消耗热量y大卡,根据“完成第一组运动,嘉嘉做了20个波比跳和40个深蹲,共消耗热量132大卡;完成第二组运动,嘉嘉做了20个波比跳和70个深蹲,”列出方程组,即可求解;(2)设要做m个波比跳,则要做(120﹣m)个深蹲,根据“只做波比跳和深蹲两个动作,花10分钟,消耗至少200大卡,”列出不等式,即可求解.【详解】解:(1)设每个波比跳消耗热量x大卡,每个深蹲消耗热量y大卡,依题意得:,解得:.答:每个波比跳消耗热量5大卡,每个深蹲消耗热量0.8大卡.(2)设要做m个波比跳,则要做(120﹣m)个深蹲,依题意得:5m+0.8(120﹣m)≥200,解得:m≥24.又∵m为整数,∴m的最小值为25.答:嘉嘉至少要做25个波比跳.【点睛】本题主要考查了二元一次方程组和一元一次不等式的应用,明确题意,准确得到数量关系是解题的关键.23.(1)是.(2)a的最大值为,最小值为;(3)【分析】(1)先求解当时,的最大值与最小值,再根据定义判断即可;(2)当时,得分<,分别求解在内时的最大值与最小值,再列不等式组即可得到答案;解析:(1)是.(2)a的最大值为,最小值为;(3)【分析】(1)先求解当时,的最大值与最小值,再根据定义判断即可;(2)当时,得分<,分别求解在内时的最大值与最小值,再列不等式组即可得到答案;(3)当时,分,两种情况分别求解的最大值与最小值,再列不等式(组)求解即可.【详解】解:(1)当时,取最大值,当时,取最小值所以代数式是的“湘一代数式”.故答案为:是.(2)∵,∴0≤|x|≤2,∴①当a≥0时,x=0时,有最大值为,x=2或-2时,有最小值为所以可得不等式组,由①得:由②得:所以:②a<0时,x=0时,有最小值为,x=2或-2时,的有大值为所以可得不等式组,由①得:由②得:所以:<,综上①②可得,所以a的最大值为,最小值为.(3)是的“湘一代数式”,当时,的最大值是最小值是当时,当时,取最小值当时,取最大值,解得:综上:的取值范围是:【点睛】本题考查的是新定义情境下的不等式或不等式组的应用,理解定义列不等式(组)是解题的关键.24.(1)证明见解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【详解】【模型】(1)证明:过点E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF解析:(1)证明见解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【详解】【模型】(1)证明:过点E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【应用】(2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解题方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Unit 4 Time to celebrate 单元话题(节日庆典)写作满分范文15篇(解析版)-2025-2026学年七年级英语上册(外研版)
- 2026年农业太空农业研究合同
- 云南省曲靖市富源六中2025-2026学年化学高一第一学期期中考试模拟试题含解析
- 胆管癌个案护理
- 郑州轨道工程职业学院《当代哲学前沿》2024-2025学年第一学期期末试卷
- 挫伤个案护理
- 四川交通职业技术学院《国际贸易原理》2024-2025学年第一学期期末试卷
- 山西省吕梁地区2026届高一上数学期末达标测试试题含解析
- 护理团队协作与多学科合作
- Unit 1 重点词汇、词性转换、词义辨析及重难点句型梳理-人教版八年级英语上册
- 四肢瘫患者的康复护理
- 研究早餐文化:消费者行为与消费习惯分析
- 微生物菌剂筛选-洞察及研究
- 甲亢病人健康教育
- 华能电站运行管理办法
- 2025年化学工程专业考研试题及答案
- 儿科护理专题报告范文
- 公司注销流程指引
- TCWAN 0166-2025 不锈钢波纹管非熔化极气体保护焊工艺规范
- 急性肠炎的护理查房
- 酒店节假日管理规定
评论
0/150
提交评论