版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初中数学试卷七年级苏科下册期末题分类汇编一、幂的运算易错压轴解答题1.综合题。(1)若2x+5y﹣3=0,求4x•32y的值.(2)若26=a2=4b,求a+b值.2.已知n为正整数,且x2n=4(1)求xn﹣3•x3(n+1)的值;(2)求9(x3n)2﹣13(x2)2n的值.3.一般地,n个相同的因数a相乘a•a•…•a,记为an,如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若an=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为lognb(即lognb).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算下列各对数的值:log24=________;log216=________;log264=________.(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?(4)根据幂的运算法则:an•am=an+m以及对数的含义说明上述结论.二、平面图形的认识(二)压轴解答题4.问题情境:如图1,已知,.求的度数.(1)经过思考,小敏的思路是:如图2,过P作,根据平行线有关性质,可得________.(2)问题迁移:如图3,,点P在射线OM上运动,,.①当点P在A,B两点之间运动时,、、之间有何数量关系?请说明理由.②如果点P在A,B两点外侧运动时(点P与点A,B,O三点不重合),请你直接写出、、之间的数量关系,(3)问题拓展:如图4,,是一条折线段,依据此图所含信息,把你所发现的结论,用简洁的数学式子表达为________.5.如图,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且(a+2)2+=0,(1)求a,b的值;(2)在坐标轴上存在一点M,使△COM的面积是△ABC的面积的一半,求出点M的坐标.(3)如图2,过点C做CD⊥y轴交y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分角∠AOP,OF⊥OE,当点P运动时,的值是否会改变?若不变,求其值;若改变,说明理由.6.己知AB∥CD,点E在直线AB,CD之间。(1)如图①,试说明:∠AEC=∠BAE+∠ECD;(2)若AH平分∠BAE,将线段CE沿射线CD平移至FG。①如图②,若∠AEC=90°,FH平分∠DFG,求∠AHF的度数;②如图③,若FH平分∠CFG,试判断∠AHF与∠AEC的数量关系并说明理由。三、整式乘法与因式分解易错压轴解答题7.观察下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;……根据这一规律计算:(1)(x﹣1)(x4+x3+x2+x+1)=________.(x﹣1)(xn+xn﹣1+…+x+1)=________.(2)22020+22019+22018+…+22+2+1.(3)32020﹣32019+32018﹣32017+…+32﹣3+1.8.【阅读材料】我们知道,图形也是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙地解决一些图形问题。在一次数学活动课上,张老师准备了若干张如图1所示的甲、乙、丙三种纸片,其中甲种纸片是边长为x的正方形,乙种纸片是边长为y的正方形,丙种纸片是长为y,宽为x的长方形,并用甲种纸片一张,乙种纸片一张,丙种纸片两张拼成了如图2所示的一个大正方形。(1)【理解应用】观察图2,用两种不同方式表示阴影部分的面积可得到一个等式,请你直接写出这个等式。(2)【拓展升华】利用(1)中的等式解决下列问题:①已知a²+b²=10,a+b=6,求ab的值。②已知(2021-c)(c-2019)=2020,求(2021-c)²+(c-2019)²的值。9.有一个边长为m+3的正方形,先将这个正方形两邻边长分别增加1和减少1,得到的长方形①的面积为S1.(1)试探究该正方形的面积S与S1的差是否是一个常数,如果是,求出这个常数;如果不是,说明理由;(2)再将这个正方形两邻边长分别增加4和减少2,得到的长方形②的面积为S2.①试比较S1,S2的大小;②当m为正整数时,若某个图形的面积介于S1,S2之间(不包括S1,S2)且面积为整数,这样的整数值有且只有16个,求m的值.四、二元一次方程组易错压轴解答题10.青山化工厂与A、B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料经铁路120km和公路10km运回工厂,制成每吨8000元的产品经铁路110km和公路20km销售到B地.已知铁路的运价为1.2元/(吨·千米),公路的运价为1.5元/(吨·千米),且这两次运输共支出铁路运费124800元,公路运费19500元.(1)设原料重x吨,产品重y吨,根据题中数量关系填写下表原料x吨产品y吨合计(元)铁路运费124800公路运费19500根据上表列方程组求原料和产品的重量.(2)这批产品的销售款比原料费与运输费的和多多少元?11.在直角坐标系中,已知点A,B的坐标是(a,0),(b,0).a,b满足方程组,C为y轴正半轴上一点,且S△ABC=6.(1)求A,B,C三点的坐标;(2)是否存在点P(t,t),使S△PAB=S△ABC?若存在,请求出P点的坐标;若不存在,请说明理由.12.为建设京西绿色走廊,改善永定河水质,某治污公司决定购买10台污水处理设备.现有A、B两种型号的设备,其中每台的价格与月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求x、y的值;(2)如果治污公司购买污水处理设备的资金不超过105万元,求该治污公司有哪几种购买方案;(3)在(2)的条件下,如果月处理污水量不低于2040吨,为了节约资金,请为该公司设计一种最省钱的购买方案.五、一元一次不等式易错压轴解答题13.某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费6200元;如果购买2台A型电脑,1台B型打印机,一共需要花费7900元。(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?14.有大小两种货车,3辆大货车与2辆小货车一次可以运货21吨,2辆大货车与4辆小货车一次可以运货22吨.(1)每辆大货车和每辆小货车一次各可以运货多少吨?(2)现有这两种货车共10辆,要求一次运货不低于35吨,则其中大货车至少多少辆?(用不等式解答)(3)日前有23吨货物需要运输,欲租用这两种货车运送,要求全部货物一次运完且每辆车必须装满.已知每辆大货车一次运货租金为300元,每辆小货车一次运货租金为200元,请列出所有的运输方案井求出最少租金.15.我们用表示不大于的最大整数,例如:,,;用表示大于的最小整数,例如:,,.解决下列问题:(1)________,________.(2)若,则的取值范围是________;若,则的取值范围是________.(3)已知,满足方程组,求,的取值范围.【参考答案】***试卷处理标记,请不要删除一、幂的运算易错压轴解答题1.(1)解:(1)∵2x+5y﹣3=0,∴2x+5y=3,∴4x•32y=22x•25y=22x+5y=23=8;(2)解:∵26=a2=4b,∴(23)2=a2=(22)b解析:(1)解:(1)∵2x+5y﹣3=0,∴2x+5y=3,∴4x•32y=22x•25y=22x+5y=23=8;(2)解:∵26=a2=4b,∴(23)2=a2=(22)b=22b,∴a=±8,2b=6,解得:a=±8,b=3,∴a+b=11或﹣5.【解析】【分析】(1)直接幂的乘方运算法则将原式变形进而求出答案;(2)直接利用幂的乘方运算法则将原式变形进而求出答案.2.(1)解:∵x2n=4,∴xn﹣3•x3(n+1)=xn﹣3•x3n+3=x4n=(x2n)2=42=16(2)解:∵x2n=4,∴9(x3n)2﹣13(x2)2n=9x6n﹣13解析:(1)解:∵x2n=4,∴xn﹣3•x3(n+1)=xn﹣3•x3n+3=x4n=(x2n)2=42=16(2)解:∵x2n=4,∴9(x3n)2﹣13(x2)2n=9x6n﹣13x4n=9(x2n)3﹣13(x2n)2=9×43﹣13×42=576﹣208=368【解析】【分析】(1)根据同底数幂的乘法法则及幂的乘方法则将原式化简为(x2n)2,再把x2n=4代入进行计算即可;(2)根据同底数幂的乘法法则及幂的乘方法则将原式化简为9(x2n)3﹣13(x2n)2,再把x2n=4代入进行计算即可.3.(1)2;4;6(2)解:∵4×16=64,∴log24+log216=log264(3)解:logaM+logaN=logaMN(4)解:设M=am,N=an,∵解析:(1)2;4;6(2)解:∵4×16=64,∴log24+log216=log264(3)解:logaM+logaN=logaMN(4)解:设M=am,N=an,∵=m,=n,=m+n,∴+=,∴+=【解析】【解答】解:(1)log24=2;log216=4;log264=6,故答案为:2;4;6;【分析】(1)根据题中给出已知概念,可得出答案.(2)观察可得:三数4,16,64之间满足的关系式为:log24+log216=log264.(3)通过分析,可知对数之和等于底不变,各项b值之积;(4)首先可设设M=am,N=an,再根据幂的运算法则:an•am=an+m以及对数的含义证明结论.二、平面图形的认识(二)压轴解答题4.(1)252°(2)解:①解:∠CPD=∠α+∠β,理由如下:如图,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;②∠CPD=∠DPE-∠CPE=∠α-∠β(3)∠A1+∠A2+…+∠An=∠B1+∠B2+…+∠Bn.【解析】【解答】(1)解:问题情境:如图,过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠PAB+∠APE=180°,∠PCD+∠CPE=180°,∵∠APC=108°,∴∠PAB+∠PCD=360°-108°=252°;故答案为:252°;(2)②解:当P在BA延长线时,∠CPD=∠β-∠α;理由:如图,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α;当P在BO之间时,∠CPD=∠α-∠β.理由:如图,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β.(3)问题拓展:分别过A2,A3…,An-1作直线∥A1M,过B1,B2,…,Bn-1作直线∥A1M,由平行线的性质和角的和差关系得∠A1+∠A2+…+∠An=∠B1+∠B2+…+∠Bn.故答案为:∠A1+∠A2+…+∠An=∠B1+∠B2+…+∠Bn.【分析】(1)问题情境:根据平行线的判定可得PE∥AB∥CD,再根据平行线的性质即可求解;(2)问题迁移:①过P作PE∥AD,根据平行线的判定可得PE∥AD∥BC,再根据平行线的性质即可求解;②过P作PE∥AD,根据平行线的判定可得PE∥AD∥BC,再根据平行线的性质即可求解;(3)问题拓展:分别过A2,A3…,An-1作直线∥A1M,过B1,B2,…,Bn-1作直线∥A1M,根据平行线的判定和性质即可求解.5.(1)∵(a+2)2+=0,∴a+2=0,b-3=0∴a=﹣2,b=3;(2)如图1,过点C作CT⊥x轴,CS⊥y轴,垂足分别为T、S.∵A(﹣2,0),B(3,0),∴AB=5,∵C(﹣1,2),∴CT=2,CS=1,∴△ABC的面积=AB•CT=5,∵△COM的面积=△ABC的面积,∴△COM的面积=,若点M在x轴上,即OM•CT=,∴OM=2.5.∴M的坐标为(2.5,0)(﹣2.5,0),若点M在y轴上,即OM•CS=,∴OM=5,∴点M坐标(0,5)或(0,﹣5),综上所述:点M的坐标为(0,5)或(﹣2.5,0)或(0,﹣5)或(2.5,0);(3)如图2,的值不变,理由如下:∵CD⊥y轴,AB⊥y轴,∴∠CDO=∠DOB=90°,∴AB∥CD,∴∠OPD=∠POB.∵OF⊥OE,∴∠POF+∠POE=90°,∠BOF+∠AOE=90°,∵OE平分∠AOP,∴∠POE=∠AOE,∴∠POF=∠BOF,∴∠OPD=∠POB=2∠BOF.∵∠DOE+∠DOF=∠BOF+∠DOF=90°,∴∠DOE=∠BOF,∴∠OPD=2∠BOF=2∠DOE,∴=2.【解析】【分析】(1)由非负性可求解;(2)分两种情况讨论,由三角形的面积公式可求解;(3)的值是定值,由平行线的性质和角平分线的性质可得∠OPD=2∠DOE,即可求解.6.(1)解:如图①【法1】过点E作直线EK∥AB因为AB∥CD,所以EK∥CD所以∠BAE=∠AEK,∠DCE=∠CEK所以∠AEC=∠AEK+∠CEK=∠BAE+∠ECD【法2】连接AC,则∠BAC+∠DCA=180°则∠BAC+∠DCA=180°即∠BAE+∠EAC+∠ECA+∠ECD=180°所以∠BAE+∠ECD=180°-(∠EAC+∠ECA)=∠AEC即∠AEC=∠BAE+∠ECD(2)解:①【法1】因为AH平分∠BAE,FH平分∠DFG,所以∠BAH=∠EAH,∠DFH=∠GFH又因为FG∥CE,所以∠GFD=∠ECD由(1)知,∠AHF=∠BAH+∠DFH=∠BAE+∠DFG=∠BAE+∠DCE=(∠BAE+∠DCE)=∠AEC=×90°=45°【法2】因为AH平分∠BAE,所以∠BAH=∠EAH因为HE平分∠DFG,设∠GFH=∠DFH=x又CE∥FG,所以∠ECD=∠GFD=2x又∠AEC=∠BAE+∠ECD,∠AEC=90°所以∠BAH=∠EAH=45°-x由(1)知,易证∠AHF=∠BAH+∠DFH=45°-x+x=45°②【法1】因为AH平分∠BAE,FH平分∠CFG,所以∠BAH=∠EAH,∠CFH=∠GFH又因为FG∥CE,所以∠GFD=∠ECD由(1)知,∠AHF=∠BAH+∠DFH=∠BAE+∠GFH+∠GFD=∠BAE+∠CFG+∠GFD=∠BAE+∠(180°-∠GFD)+∠GFD=90°+
(∠BAE+∠GFD)=90°+(∠BAE+∠ECD)=90+∠AEC【法2】设∠BAH=∠EAH=x,∠CED=y,则∠GFD=y因为HF平分∠CFG,所以∠GFH=∠CFH=90°-由(1)知∠AEC=∠BAE+∠ECD=2x+y∠AHF=∠BAH+∠DFH=∠BAH+∠DFG+∠GFH=x+y+90°-=x++90°=(2x+y)+90°=∠AEC+90°所以∠AHF=∠AEC+90°(或2∠AHF=∠AEC+180°或2∠AHF-∠AEC=180°)【解析】【分析】(1)过点E作直线EK∥AB,根据平行线的性质即可求解;也可连接AC,根据平行线的性质和三角形内角和定理求解;(2)①根据(1)的结论可得∠AHF=∠BAH+∠DFH,再结合平行线的性质和角平分线的定义表示出∠AHF,即可求解;也可设∠GFH=∠DFH=x,则∠BAH=45°-x,再根据∠AHF=∠BAH+∠DFH求解;②根据(1)的结论可得∠AHF=∠BAH+∠DFH,结合角平分线的定义将∠AHF用∠AEC表示出来;也可设∠BAH=∠EAH=x,∠CED=∠GFD=y,则有∠AEC=∠BAE+∠ECD=2x+y,再结合∠AHF=∠BAH+∠DFH即可求解.三、整式乘法与因式分解易错压轴解答题7.(1)x5﹣1;xn+1﹣1(2)解:(x﹣1)(xn+xn﹣1+…+x+1)=xn+1﹣1,把x=2,n=2020代入得,22020+22019+22018+…+22+2+1=(2﹣解析:(1)x5﹣1;xn+1﹣1(2)解:(x﹣1)(xn+xn﹣1+…+x+1)=xn+1﹣1,把x=2,n=2020代入得,22020+22019+22018+…+22+2+1=(2﹣1)(22020+22019+22018+…+22+2+1),=22021﹣1(3)解:(x﹣1)(xn+xn﹣1+…+x+1)=xn+1﹣1,把x=﹣3,n=2020代入得,(﹣3﹣1)(32020﹣32019+32018﹣32017+…+32﹣3+1)=(﹣3)2021﹣1,所以.32020﹣32019+32018﹣32017+…+32﹣3+1,=,=【解析】【解答】解:(1)根据规律可得,x5﹣1,xn+1﹣1;故答案为:x5﹣1,xn+1﹣1;【分析】(1)根据代数式的规律可得答案;(2)根据规律(x﹣1)(xn+xn﹣1+…+x+1)=xn+1﹣1,把x=2,n=2020代入计算即可;(3)根据规律(x﹣1)(xn+xn﹣1+…+x+1)=xn+1﹣1,把x=﹣3,n=2020代入计算即可.8.(1)解:x²+y²=(x+y)²-2xy(2)解:①由题意得:ab=把a²+b²=10,a+b=6代入上式得,ab==13②由题意得:(2021-c)²+(c-2019)解析:(1)解:x²+y²=(x+y)²-2xy(2)解:①由题意得:ab=把a²+b²=10,a+b=6代入上式得,ab==13②由题意得:(2021-c)²+(c-2019)²=(2021-c+c-2019)²-2(2021-c)(c-2019)=22-2×2020=-4036【解析】【分析】(1)方法一是直接求出阴影部分面积x2+y2,方法二是间接求出阴影部分面积,即(x+y)为边的正方形面积减去两个x为宽、y为长的矩形面积,即(x+y)2−2xy,进而根据用两个不同的算式表示同一个图形的面积,则这两个式子应该相等即可得出等式;(2)①根据等式的性质将(1)所得的等式变形后将a2+b2=10,a+b=6代入即可解决问题;②根据完全平方公式的恒等变形,a2+b2=(a+b)2-2ab,可以将2021−c看作a,将c−2019看作b,整体代入就可算出答案.9.(1)解:S与S1的差是是一个常数,∵s=(m+3)2=m2+6m+9,∴,∴S与S1的差是1(2)解:∵∴,∴当-2m+1﹥0,即-1﹤m﹤12解析:(1)解:S与S1的差是是一个常数,∵,∴,∴S与S1的差是1(2)解:∵∴,∴当-2m+1﹥0,即-1﹤m﹤时,﹥;当-2m+1﹤0,即m﹥时,﹤;当-2m+1=0,即m=时,=;②由①得,S1﹣S2=-2m+1,∴,∵m为正整数,∴,∵一个图形的面积介于S1,S2之间(不包括S1,S2)且面积为整数,整数值有且只有16个,∴16<≤17,∴<m≤9,∵m为正整数,∴m=9【解析】【分析】(1)根据正方形的面积计算方法及长方形的面积计算方法分别表示出S与S1,再根据整式减法运算求出S与S1的差即可得出结论;(2)①根据正方形的面积计算方法及长方形的面积计算方法分别表示出S1与S2,再根据整式减法运算求出S1与S2的差,再根据差大于0时,﹥;差小于0时,
<;差等于0时,=;分别列出不等式或方程,求解即可;②由①得,S1﹣S2=-2m+1,故=2m-1,由于一个图形的面积介于S1,S2之间(不包括S1,S2)且面积为整数,整数值有且只有16个,故16<≤17,解不等式组并求出其整数解即可。四、二元一次方程组易错压轴解答题10.(1)解:设该工厂从A地购买了x吨原料,制成运往B地的产品y吨,依题意,得:,解得:{x=500y=400.填表如下:
原料x吨
产品y吨
合计(元)
铁路运解析:(1)解:设该工厂从A地购买了吨原料,制成运往B地的产品吨,依题意,得:,解得:.填表如下:原料x吨产品y吨合计(元)铁路运费7200052800124800公路运费75001200019500答:该工厂从A地购买了吨原料,制成运往B地的产品吨;(2)解:8000×400-(1000×500+19500+124800)=2555700(元).答:这批产品的销售款比原料费与运输费的和多2555700元【解析】【分析】(1)设该工厂从A地购买了吨原料,制成运往B地的产品吨,由这两次运输共支出公路运输费19500元、铁路运输费124800元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)由总价=单价×数量结合多的费用=销售总额-(原料费+运输费),即可求出结论.11.(1)解:由方程组{2a+b=53a-2b=-11,解得{a=-3b=1,∴A(﹣3,0),B(1,0),∵c为y轴正半轴上一点,且S△ABC=6,∴12AB•OC=6,解析:(1)解:由方程组,解得,∴A(﹣3,0),B(1,0),∵c为y轴正半轴上一点,且S△ABC=6,∴AB•OC=6,解得:OC=3∴C(0,3).(2)解:存在.理由:∵P(t,t),且S△PAB=S△ABC,∴×4×|t|=×6,解得t=±1,∴P(1,1)或(﹣1,﹣1).【解析】【分析】(1)解出方程组即可得到时点A,B的坐标,利用S△ABC=6,求出点C的坐标;(2)利用S△PAB=S△ABC求出点P的坐标即可.12.(1)解:由题意,得解得{x=12y=10(2)解:设治污公司决定购买A型设备a台,则购买B型设备(10-a)台.由题意,得解得所以,该公司有解析:(1)解:由题意,得解得(2)解:设治污公司决定购买A型设备a台,则购买B型设备(10-a)台.由题意,得解得所以,该公司有以下三种方案:A型设备0台,B型设备为10台;A型设备1台,B型设备为9台;A型设备2台,B型设备为8台(3)解:由题意,得240a+200(10-a)≥2040解得:所以,购买A型设备1台,B型设备9台最省钱【解析】【分析】(1)根据题意列出二元一次方程组,解之即可得出答案.(2)设治污公司决定购买A型设备a台,则购买B型设备(10-a)台,根据购买污水处理设备的资金不超过105万元列出一元一次不等式,解之即可得出a的范围,从而可得具体方案.(3)根据题意列出一元一次不等式,解之即可得出a的取值范围,从而可得答案.五、一元一次不等式易错压轴解答题13.(1)解:设A型电脑每台x元,B型打印机每台y元,则{x+2y=62002x+y=7900,解得:{x=3200y=1500,答:A型电脑每台3200元,B型打印机每台1500元.解析:(1)解:设A型电脑每台x元,B型打印机每台y元,则,解得:,答:A型电脑每台3200元,B型打印机每台1500元.(2)解:设A型电脑购买a台,则B型打印机购买(a+1)台,则3200a+1500(a+1)≤20000,47a+15≤200,47a≤185,,∵a为正整数,∴a≤3,答:学校最多能购买4台B型打印机.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年桥梁新技术在耐久性评估中的应用探讨
- 2026年建筑中的智能化设备与自动化设计
- 2026年桥梁施工过程中如何保持材料质量
- 2026年模块化建筑在工地的应用策略
- 2026春招:西部航空心理测试题及答案
- 货运场站安全培训资料课件
- 基于人工智能的医学图像识别
- 医疗机器人与辅助手术技术
- 心电图室工作亮点总结
- 2026年广东江门中医药职业学院单招职业技能笔试参考题库带答案解析
- 住院病历质量考核评分表
- 发泡模具验收报告
- 沪科版七年级上册初一数学全册教案(教学设计)
- 焊接夹具设计说明书-一种用于焊接的固定夹具
- 地铁施工中管线原位保护方法
- GB/T 16825.1-2022金属材料静力单轴试验机的检验与校准第1部分:拉力和(或)压力试验机测力系统的检验与校准
- GB/T 2076-1987切削刀具用可转位刀片型号表示规则
- GB/T 20033.3-2006人工材料体育场地使用要求及检验方法第3部分:足球场地人造草面层
- GB/T 18997.2-2020铝塑复合压力管第2部分:铝管对接焊式铝塑管
- GB/T 10067.47-2014电热装置基本技术条件第47部分:真空热处理和钎焊炉
- 状语从句精讲课件
评论
0/150
提交评论