版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.5.1直线与圆的位置关系“海上生明月,天涯共此时。”,描绘了月亮从海平面升起的景象,表达了作者对远方亲人的思念。海上生明月天涯共此时(一)情境引入激发兴趣问题1:图片中,直线和圆分别是什么位置关系?又是如何定义的呢?(二)直观感知定性分析问题2:结合初中所学,我们怎么判断直线与圆的位置关系?问题3:能否通过圆的几何要素判断直线与圆的位置关系?问题4:类比用直线方程来解决直线与直线的位置关系的方法,我们能否利用直线与圆的方程通过定量计算来判断它们之间的位置关系呢?解法一:由直线l与圆的方程,得:消去y,得:因为:=1>0所以,直线l与圆相交,有两个公共点.所以,直线l与圆的两个交点是:把代入方程①,得;把代入方程①,得.
A(2,0),B(1,3)由,解得:
例1
如图,已知直线l:和圆心为C的圆,判断直线l与圆的位置关系;如果相交,求l被圆C所截得的弦长.三、探究新知提炼方法探究一、如何判断直线与圆的位置关系解法二:圆心C的坐标为(0,1),半径长为,点C
(0,1)到直线l的距离所以,直线l与圆相交,有两个公共点.判断直线与圆的位置关系的方法知识小结1思考:用“代数法”与“几何法”判断直线与圆的位置关系各有什么特点?M1.几何法:计算圆心到直线的距离d,与半径r相比较若相交,则可用勾股定理求得弦长
若相交,可以由方程组解得两个交点坐标,利用两点间距离公式求得弦长2、代数法:联立方程组,消元,得到一元二次方程,然后求判别式。例2过点P(2,1)作圆O:x2+y2=1的切线l,求此切线l的方程..Poxy解法1:即kx-y+1-2k=0由圆心(0,0)到切线l的距离等于圆的半径1,得
探究二、求过定点的圆的切线方程.Poxy例2过点P(2,1)作圆O:x2+y2=1的切线l,求此切线l的方程..Poxy解:①当切线l的斜率存在时,即kx-y+2-k=0由圆心(0,0)到切线l的距离等于圆的半径1,得
设切线l的方程为y-2=k(x-1),
此时,切线l的方程为3x-4y+5=0.②当切线l的斜率不存在时,此时直线x=1也符合题意.综上可知,切线l的方程为x=1或3x-4y+5=0.变式1:过点P(2,1)作圆O:x2+y2=1的切线l,求此切线l的方程.P(1,2)
知识小结2求过一点P的圆的切线方程问题需注意:1.先判断点P与圆的位置关系若点P在圆上,切线有一条若点P在圆外,切线有两条2.在求切线的过程中,要注意讨论斜率不存在的情况.先定位,再定量四、课堂练习反馈评价
已知圆C:(x-2)2+(y-3)2=4外有一点P(4,-1),过点P作直线l.(1)当直线l与圆C相切时,求直线l的方程;(2)当直线l的倾斜角为135°时,求直线l被圆C所截得的弦长.3x+4y-8=0或x=4
五、总结梳理形成网络1、这节课咱们主要研究了那些内容?2、这节课体现了哪些数学思想?六、课后作业巩固提升1、复习巩固:课本习题2.5第1、3、10题2、探究题学有余力同学完成右面两个高考题直线与圆的位置关系人民教育出版社普通高中教科书A版选择性必修第一册学情分析目标分析教法分析过程分析直线与圆的位置关系教材分析教学反思
本节课选自高中数学人教A版选择性必修一。《直线与圆的位置关系》是圆与方程这一章的重要内容,它是学生在初中平面几何中已学过直线与圆的三种位置关系,以及在前面几节学习了直线与圆的方程的基础上,从代数角度,运用坐标法进一步研究直线与圆的位置关系,为后面学习平面解析几何打下了坚实的基础,起到了承上启下的作用。
教材分析1.教材的地位和作用2.教学重点、难点重点::掌握在坐标系中判定直线与圆的位置关系的两种方法:几何法与代数法。进一步体会数形结合这一重要数学思想。难点:把实际问题转化为数学问题,并建立相应的数学模型;
学情分析
除了教材分析,合理地把控学情也是上好一节课的重要前提,接下来我来谈一谈学生的实际情况。学生在初中已经学习了直线与圆的位置关系,是通过定性来判断的;而在高中,则要求学生类比用方程研究两条直线位置关系的方法,利用直线和圆的方程,通过定量计算研究直线与圆的位置关系。虽然他们已经具备了一定的知识基础,但是对于独立分析问题、解决问题的能力还是有所欠缺。所以在教学过程中要注意深入浅出,适时引导。目标分析
基于以上对教材和学情的分析,考虑到学生已有的认知结构和心理特征以及高中核心素养的要求,我制定了如下教学目标:1.理解直线与圆的三种位置关系,提升学生直观想象、数学抽象的学科素养.2.能根据直线和圆的方程,用代数法和几何法来判断直线与圆的位置关系,提升逻辑推理、数学运算的学科素养.3.通过对直线与圆的位置关系的探究活动,经历知识的建构过程,培养学生独立思考、自主探究、合作交流的学习方式.4.强化学生用坐标法解决几何问题的意识,培养学生分析问题和灵活解决问题的能力.
本节课以问题为载体,学生活动为主线,遵循学生、教师双主体的原则。体现教师作为一个设计者、组织者、引导者的作用,同时突出学生自主探究、动手实践、小组合作交流的学习方式,让学生利用已有的知识,自主探究,建立数学模型,以培养学生主动学习的习惯,提高学生分析问题和解决问题的能力,提高思维能力和归纳能力,培养学生的数学素养。教法分析过程分析1、情境引入,激发兴趣2、直观感知,定性分析3、探索新知,提炼方法4、总结梳理,形成网络5、学以致用,反馈评价6、课后作业巩固提升
首先是导入环节,我用视频的方式引出本节课的课题并提出问题1,激发学生的学习兴趣。视频配合对应的图形,让学生更加形象的理解相关知识点。1、情境引入,激发兴趣2、直观感知,定性分析设计意图:用几何画板动画展示直线与圆的位置关系,问题2与问题3的设计,让学生充分参与,建立数学模型,引导学生主动回顾初中所学直线与圆的三种位置关系及判断方法.3、探究新知提炼方法
在这个环节中首先我会给学生展示课本中的例1,让学生以小组的形式展开讨论,讨论过程中我会巡视并加以引导,讨论结束后我会让小组代表进行汇报。经过讨论有的小组能够得出解法一,有的小组得出解法二。然后带领学生一起总结两种解法的解题步骤并明确注意事项。并思考用“代数法”与“几何法”判断直线与圆的位置关系各有什么特点?
设计意图:本环节通过自主探究和小组讨论的方法帮助学生顺利用几何法解决直线与圆的位置关系,并得到了两种解决方法的解题步骤及注意事项,使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力,使新知得到有效巩固.提高了教学效率。
设计意图:1、讨论、分享过程,可以培养学生的语言表达能力和沟通能力,增强学生思维的严谨性2、多个例题的讲解,能够加深学生对知识点的理解与掌握。
例2则是给出了圆的方程以及直线与圆的位置关系,让我们反过来求解切线的方程。给同学们两分钟的时间,同桌相互讨论一下,这道题应该怎么入手解答,并找一名同学板书过程。教师点评。4、课堂练习反馈评价设计意图:课堂及时的检测,可以有效地发现学生应用新知过程中出现的问题。教学过程中,引导学生利用图形的几何性质求解,这样有助于简化运算,使学生巩固了新知识,灵活运用了所学知识,培养了学生思维的深刻性和灵活性已知圆C:(x-2)2+(y-3)2=4外有一点P(4,-1),过点P作直线l.(1)当直线l与圆C相切时,求直线l的方程;(2)当直线l的倾斜角为135°时,求直线l被圆C所截得的弦长.5、总结梳理,形成网络
由学生回顾本节课主要内容,并进行归纳总结.知识性内容的小结能将传授知识转化为学生的内在素质,数学思想方法的小结能让学生从更高层次上思考问题.这个过程,既培养了学生的语言表达能力和思维的严谨性,又有利于学生构建完整的知识体系,养成良好的学习习惯.
设计意图:作业分层落实.巩固题让学生复习解题思路,完善解题格式,以便举一反三.探究题为高考真题,供学有余力的学生自主探索,提高他们分析问题、解决问题的能力和自信心.
6、课后作业
巩固提升
1、复习巩固:课本习题2.5第1、3、10题2、探究题学有余力同学完成右面两个高考题7、板书设计
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家长食品安全教育课件
- 2026年酒店服务外包合同协议
- 2026年社交媒体推广合同范本
- 房屋保险合同2026年协议条款
- 2026年网络安全评估意向书合同
- 2026年游戏软件著作权许可合同
- 家长会安全教学课件
- 家长会安全专题教育课件
- 2026年工业自动化保养合同
- 2026年专利许可终止合同协议
- 硬笔书法全册教案共20课时
- DB42T 850-2012 湖北省公路工程复杂桥梁质量鉴定规范
- DB 5201∕T 152.2-2025 交通大数据 第2部分:数据资源目录
- 月经不调的中医护理常规
- 2024-2025学年江苏省南通市如东县、通州区、启东市、崇川区高一上学期期末数学试题(解析版)
- 中盐集团招聘试题及答案
- 石家庄市得力化工有限公司5万吨-年煤焦油加工生产装置安全设施设计诊断专篇
- 现代密码学(第4版)-习题参考答案
- 门诊护士长工作总结汇报
- 油气长输管道检查标准清单
- 幼教家长讲座
评论
0/150
提交评论