江苏省常州市戚墅堰中学2025-2026学年高二上数学期末学业水平测试模拟试题含解析_第1页
江苏省常州市戚墅堰中学2025-2026学年高二上数学期末学业水平测试模拟试题含解析_第2页
江苏省常州市戚墅堰中学2025-2026学年高二上数学期末学业水平测试模拟试题含解析_第3页
江苏省常州市戚墅堰中学2025-2026学年高二上数学期末学业水平测试模拟试题含解析_第4页
江苏省常州市戚墅堰中学2025-2026学年高二上数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省常州市戚墅堰中学2025-2026学年高二上数学期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛物线C:的焦点为F,P,R为C上位于F右侧的两点,若存在点Q使四边形PFRQ为正方形,则()A. B.C. D.2.设为等差数列的前项和,若,,则公差的值为()A. B.2C.3 D.43.在四面体中,,,,且,,则等于()A. B.C. D.4.不等式的解集为()A. B.C. D.5.倾斜角为45°,在轴上的截距是的直线方程为()A. B.C. D.6.已知双曲线C1的一条渐近线方程为y=kx,离心率为e1,双曲线C2的一条渐近线方程为y=x,离心率为e2,且双曲线C1、C2在第一象限交于点(1,1),则=()A.|k| B.C.1 D.27.已知圆与圆外切,则()A. B.C. D.8.已知是函数的导函数,则()A. B.C. D.9.刘徽是一个伟大的数学家,他的杰作《九章算术注》和《海岛算经》是中国宝贵的数学遗产,他所提出的割圆术可以估算圆周率π,理论上能把π的值计算到任意精度.割圆术的第一步是求圆的内接正六边形的面积.若在圆内随机取一点,则此点取自该圆内接正六边形的概率是()A. B.C. D.10.已知数列满足,其前项和为,,.若数列的前项和为,则满足成立的的最小值为()A.10 B.11C.12 D.1311.设为坐标原点,直线与双曲线的两条渐近线分别交于两点,若的面积为8,则的焦距的最小值为()A.4 B.8C.16 D.3212.2019年湖南等8省公布了高考改革综合方案将采取“”模式即语文、数学、英语必考,考生首先在物理、历史中选择1门,然后在思想政治、地理、化学、生物中选择2门,一名同学随机选择3门功课,则该同学选到历史、地理两门功课的概率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.当曲线与直线有两个不同的交点时,实数k的取值范围是____________14.设,若不等式在上恒成立,则的取值范围是______.15.已知函数是定义域上的单调递增函数,是的导数且为定义域上的单调递减函数,请写出一个满足条件的函数的解析式___________16.设函数,若存在实数使得成立,则的取值范围是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某种机械设备随着使用年限的增加,它的使用功能逐渐减退,使用价值逐年减少,通常把它使用价值逐年减少的“量”换算成费用,称之为“失效费”.某种机械设备的使用年限(单位:年)与失效费(单位:万元)的统计数据如下表所示:使用年限(单位:年)1234567失效费(单位:万元)2.903.303.604.404.805.205.90(1)由上表数据可知,可用线性回归模型拟合与的关系.请用相关系数加以说明;(精确到0.01)(2)求出关于的线性回归方程,并估算该种机械设备使用8年的失效费参考公式:相关系数线性回归方程中斜率和截距最小二乘估计计算公式:,参考数据:,,18.(12分)已知圆C的圆心在直线上,且过点,(1)求圆C的方程;(2)过点作圆C的切线,求切线的方程19.(12分)在二项式的展开式中,______.给出下列条件:①若展开式前三项的二项式系数的和等于46;②所有奇数项的二项式系数的和为256.试在上面两个条件中选择一个补充在上面的横线上,并解答下列问题:(1)求展开式中二项式系数最大的项;(2)求展开式的常数项.20.(12分)球形物体天然萌,某食品厂沿袭老字号传统,独家制造并使用球形玻璃瓶用于售卖酸梅汤,其中瓶子的制造成本c(分)与瓶子的半径r(cm)的平方成正比,且当cm时,制造成本c为3.2π分,已知每出售1mL的酸梅汤,可获得0.2分,且制作的瓶子的最大半径为6cm(1)写出每瓶酸梅汤的利润y与r的关系式(提示:);(2)瓶子半径多大时,每瓶酸梅汤的利润最大,最大为多少?(结果用含π的式子表示)21.(12分)已知直线,圆.(1)证明:直线l与圆C相交;(2)设l与C的两个交点分别为A、B,弦AB的中点为M,求点M的轨迹方程;(3)在(2)的条件下,设圆C在点A处的切线为,在点B处的切线为,与的交点为Q.试探究:当m变化时,点Q是否恒在一条定直线上?若是,请求出这条直线的方程;若不是,说明理由.22.(10分)已知点到两个定点的距离比为(1)求点的轨迹方程;(2)若过点的直线被点的轨迹截得的弦长为,求直线的方程

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】不妨设,不妨设,则,利用抛物线的对称性及正方形的性质列出的方程求得后可得结论【详解】如图所示,设,不妨设,则,由抛物线的对称性及正方形的性质可得,解得(正数舍去),所以故选:A2、C【解析】根据等差数列前项和公式进行求解即可.【详解】,故选:C3、B【解析】根据空间向量的线性运算即可求解.【详解】解:由题知,故选:B.4、A【解析】根据一元二次不等式的解法进行求解即可.【详解】,故选:A.5、B【解析】先由倾斜角为45°,可得其斜率为1,再由轴上的截距是,可求出直线方程【详解】解:因为直线的倾斜角为45°,所以直线的斜率为,因为直线在轴上的截距是,所以所求的直线方程为,即,故选:B6、C【解析】根据渐近线方程设出双曲线方程,再由过点,可知双曲线方程,从而可求离心率.【详解】由题,设双曲线的方程为,又因为其过,且可知,不妨设,代入,得,所以双曲线的方程为,所以,同理可得双曲线的方程为,所以可得,所以,当时,结论依然成立.故选:C7、D【解析】根据两圆外切关系,圆心距离等于半径的和列方程求参数.【详解】由题设,两圆圆心分别为、,半径分别为1、r,∴由外切关系知:,可得.故选:D.8、B【解析】求出,代值计算可得的值.【详解】因为,则,因此,.故选:B.9、B【解析】此点取自该圆内接正六边形的概率是正六边形面积除以圆的面积,分别求出即可.【详解】如图,在单位圆中作其内接正六边形,该正六边形是六个边长等于半径的正三角形,其面积,圆的面积为则所求概率.故选:B【点睛】此题考查几何概率模型求解,关键在于准确求出正六边形的面积和圆的面积.10、A【解析】根据题意和对数的运算公式可证得为以2为首项,2为公比的等比数列,求出,进而得到,利用裂项相消法求得,再解不等式即可.【详解】由,又,所以数列是以2为首项,2为公比的等比数列,故,则,所以,由,得,即,有,又,所以,即n的最小值为10.故选:A11、B【解析】因为,可得双曲线的渐近线方程是,与直线联立方程求得,两点坐标,即可求得,根据的面积为,可得值,根据,结合均值不等式,即可求得答案.【详解】双曲线的渐近线方程是直线与双曲线的两条渐近线分别交于,两点不妨设为在第一象限,在第四象限联立,解得故联立,解得故面积为:双曲线其焦距为当且仅当取等号的焦距的最小值:故选:B.【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.12、A【解析】先由列举法计算出基本事件的总数,然后再求出该同学选到历史、地理两门功课的基本事件的个数,基本事件个数比即为所求概率.【详解】由题意,记物理、历史分别为、,从中选择1门;记思想政治、地理、化学、生物为、、、,从中选择2门;则该同学随机选择3门功课,所包含的基本事件有:,,,,,,,,,,,,共个基本事件;该同学选到历史、地理两门功课所包含的基本事件有:,,共个基本事件;该同学选到物理、地理两门功课的概率为.故选:A.【点睛】本题考查求古典概型的概率,属于基础题型.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求出直线恒过的定点,结合曲线的图象,数形结合,找出临界状态,即可求得的取值范围.【详解】因为,故可得,其表示圆心为,半径为的圆的上半部分;因为,即,其表示过点,且斜率为的直线.在同一坐标系下作图如下:不妨设点,直线斜率为,且过点与圆相切的直线斜率为数形结合可知:要使得曲线与直线有两个不同的交点,只需即可.容易知:;不妨设过点与相切的直线方程为,则由直线与圆相切可得:,解得,故.故答案为:.14、【解析】构造,利用导数求其最大值,结合已知不等式恒成立,即可确定的范围.【详解】令,则且,若得:;若得:;所以在上递增,在上递减,故,要使在上恒成立,即.故答案为:.15、(答案不唯一)【解析】由题意可得0,结合在定义域上为减函数可取.【详解】因为在定义域为单调增函数所以在定义域上0,又因为在定义域上为减函数,且大于等于0.所以可取(),(),满足条件所以可为().故答案为:(答案不唯一).16、【解析】将变形为,令,,分别研究其单调性及值域,使问题转化为即可.【详解】由题,,令,则,由,得,由,得,所以在递减,在递增,所以,令,则,由,得,由,得,所以在递增,在递减,所以,若存在实数使得成立,即存在实数使得成立,即存在实数使得恒成立所以,即,解得,所以取值范围为.故答案为:【点睛】关键点点睛:本题解题关键是将所求问题转为存在实数使得恒成立,结合的值域进一步转化为存在实数使得恒成立,再只需即可.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析;(2);失效费为6.3万元【解析】(1)根据相关系数公式计算出相关系数可得结果;(2)根据公式求出和可得关于的线性回归方程,再代入可求出结果.【详解】(1)由题意,知,,∴结合参考数据知:因为与的相关系数近似为0.99,所以与的线性相关程度相当大,从而可以用线性回归模型拟合与的关系(2)∵,∴∴关于的线性回归方程为,将代入线性回归方程得万元,∴估算该种机械设备使用8年的失效费为6.3万元18、(1)(2)或【解析】(1)由圆心在直线上,设,由点在圆上,列方程求,由此求出圆心坐标及半径,确定圆的方程;(2)当切线的斜率存在时,设其方程为,由切线的性质列方程求,再检验直线是否为切线,由此确定答案.小问1详解】因为圆C的圆心在直线上,设圆心的坐标为,圆C过点,,所以,即,解得,则圆心,半径,所以圆的方程为;【小问2详解】当切线的斜率存在时,设直线的方程为,即,因为直线和圆相切,得,解得,所以直线方程为,当切线的斜率不存在时,易知直线也是圆的切线,综上,所求的切线方程为或19、(1),;(2).【解析】选择①:,利用组合数公式,计算即可;选择②:转化为,计算即可(1)由于共9项,根据二项式系数性质,二项式系数最大的项为第5项和第6项,利用通项公式计算即可;(2)写出展开式的通项,令,即得解【详解】选择①.,即,即,即,解得或(舍去).选择②.,即,解得.(1)展开式中二项式系数最大的项为第5项和第6项,,.(2)展开式的通项为,令,得,所以展开式中常数项为第7项,常数项为.20、(1),(2)当时,每瓶酸梅汤的利润最大,最大利润为28.8π【解析】(1)直接由条件写出关系式即可;(2)直接求导确定单调性后,求出最大值即可.【小问1详解】设瓶子的制造成本c与瓶子的半径r的平方成正比的比例系数等于k,则瓶子的制造成本,由题意,当时,∴,即瓶子的制造成本∴每瓶酸梅汤的利润是,∴每瓶酸梅汤的利润关于r的函数关系式为:,【小问2详解】由(1)知,则,令,则,当时,;当时,∴函数在上单调递减,在上单调递增,∴当时,每瓶酸梅汤的利润最大,最大利润为28.8π.21、(1)证明见解析;(2);(3)点Q恒在直线上,理由见解析.【解析】(1)求出直线过定点,得到在圆内部,故证明直线l与圆C相交;(2)设出点,利用垂直得到等量关系,整理后即为轨迹方程;(3)利用Q、A、B、C四点共圆,得到此圆方程,联立,求出相交弦的方程,即直线的方程,根据直线过的定点,得到,从而得到点Q恒在直线上.【小问1详解】证明:直线过定点,代入得:,故在圆内,故直线l与圆C相交;【小问2详解】圆的圆心为,设点,由垂径定理得:,即,化简得:,点M的轨迹方程为:【小问3详解】设点,由题意得:Q、A、B、C四点共圆,且圆的方程为:,即,与圆C的方程联立,消去二次项得:,即为直线的方程,因为直线过定点,所以,解得:,所以当m变化时,点Q恒在直线上.【点睛】本题的第三问是稍

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论