苏教版七年级下册期末数学模拟真题试卷(比较难)解析_第1页
苏教版七年级下册期末数学模拟真题试卷(比较难)解析_第2页
苏教版七年级下册期末数学模拟真题试卷(比较难)解析_第3页
苏教版七年级下册期末数学模拟真题试卷(比较难)解析_第4页
苏教版七年级下册期末数学模拟真题试卷(比较难)解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

苏教版七年级下册期末数学模拟真题试卷(比较难)解析一、选择题1.计算的正确结果是()A. B. C. D.答案:D解析:D【分析】根据幂的乘方法则计算即可解答.【详解】解:(a2)3=a6,故选:D.【点睛】本题考查了幂的乘方法则,理清指数的变化是解题的关键.2.如图,直线a,b被直线c所截,∠1的同旁内角是()A.∠2 B.∠3 C.∠4 D.∠5答案:A解析:A【分析】根据同旁内角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行求解.【详解】解:直线a,b被直线c所截,∠1的同旁内角是∠2,故选:A.【点睛】本题考查了同旁内角的定义,能熟记同旁内角的定义的内容是解此题的关键,注意数形结合.3.若,则x+y的值是()A.﹣5 B.5 C.﹣4 D.4答案:B解析:B【分析】①+②得:2x+2y=10,进而即可求得x+y=5.【详解】解:,①+②得:2x+2y=10,∴x+y=5.故选:B.【点睛】本题考查了解二元一次方程组的方法,要熟练掌握,注意加减法和代入法的应用.4.4张长为a,宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2,若S1=S2,则a,b满足的关系式是()A.a=1.5b B.a=2b C.a=2.5b D.a=3b答案:D解析:D【分析】先用含有a、b的代数式分别表示S2、S1,再根据S1=S2,整理可得结论.【详解】解:由题意可得:S2=4×b(a+b)=2b(a+b);S1=(a+b)2﹣S2=(a+b)2﹣(2ab+2b2)=a2+2ab+b2﹣2ab﹣2b2=a2﹣b2;∵S1=S2,∴2b(a+b)=a2﹣b2,∴2b(a+b)=(a﹣b)(a+b),∵a+b>0,∴2b=a﹣b,∴a=3b.故选:D.【点睛】本题考查了整式的混合运算,数形结合并熟练运用完全平方公式和平方差公式是解题的关键.5.关于的不等式的解集如图所示,则的取值是()A. B. C. D.答案:A解析:A【分析】解关于x的不等式得出,由数轴知不等式的解集即可得出关于a的方程,解之即可.【详解】解:,移项,得:,系数化为1,得:,由题图可知,,,解得,.故选:A【点睛】本题主要考查解一元一次不等式,熟练掌握解一元一次不等式和一元一次方程的能力是解题的关键.6.下列命题中,属于假命题的是()A.如果三角形三个内角的度数比是,那么这个三角形是直角三角形B.平行于同一直线的两条直线平行C.内错角不一定相等D.若的绝对值等于,则一定是正数答案:D解析:D【分析】根据所学知识对命题依次判断真假.【详解】解:A、如果三角形三个内角的度数比是,则三个角的度数分别是:,所以这个三角形是直角三角形,为真命题,不符合题意;B、平行于同一直线的两条直线平行,为真命题,不符合题意;C、内错角不一定相等,为真命题,不符合题意;D、若的绝对值等于,当时成立,不是正数,故为假命题,符合题意;故选:D.【点睛】本题考查了命题的判断真假,解题的关键是:结合所学知识对命题依次判断,正确的为真命题,错误的为假命题.7.已知整数、、、……满足下列条件:,,,,……,(n为正整数)依此类推,则的值为()A. B. C. D.答案:A解析:A【分析】根据条件求出前几个数的值,再分n是奇数时,,n是偶数时,,然后把n的值代入进行计算即可得解.【详解】解:a1=-1,a2=-|a1+1|=-|-1+1|=0,a3=-|a2+2|=-|0+2|=-2,a4=-|a3+3|=-|-2+3|=-1,a5=-|a4+4|=-|-1+4|=-3,a6=-|a5+4|=-|-3+5|=-2,a7=-|a6+4|=-|-2+6|=-4…,所以,n是奇数时,,n是偶数时,,a2019=(2019+1)=-1010,故选:A.【点睛】此题主要考查了数字变化规律,根据所求出的数,观察出n为奇数与偶数时的结果的变化规律是解题的关键.8.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD的条件为()A.①②③④ B.①②④ C.①③④ D.①②③答案:C解析:C【详解】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴能得到AB∥CD的条件是①③④.故选C.【点睛】此题主要考查了平行线的判定,解题关键是合理利用平行线的判定,确定同位角、内错角、同旁内角.平行线的判定:同旁内角互补,两直线平行;内错角相等,两直线平行;同位角相等,两直线平行.二、填空题9.计算:=______.解析:【分析】根据整式的乘法运算法则即可求解.【详解】=故答案为:.【点睛】此题主要考查整式的乘法,解题的关键是熟知单项式乘单项式的运算法则.10.下列命题中:①带根号的数都是无理数;②直线外一点与直线上各点的连线段中,垂线段最短;③过一点有且只有一条直线与已知直线平行;④已知三条直线,,,若,,则.真命题有______(填序号).解析:②④【分析】由无理数的定义、垂线段最短的性质、平行公理、平行线的推论分别进行判断,即可得到答案.【详解】解:是有理数,带根号的数都是无理数是错误的;则①错误;直线外一点与直线上各点的连线段中,垂线段最短;②正确;过直线外一点有且只有一条直线与已知直线平行;则③错误;已知三条直线,,,若,,则;④正确;故答案为:②④.【点睛】本题考查了无理数的定义、垂线段最短的性质、平行公理、平行线的推论,解题的关键是熟记所学的知识进行判断.11.在一个顶点处用边长相等的三个正多边形进行密铺,其中两个是正方形和正六边形,则另一个必须是正_____边形.解析:12【分析】正多边形的组合能否进行平面镶嵌,关键看位于同一顶点处的几个角之和能否为,若能,则说明可以进行平面镶嵌,反之,则说明不能进行平面镶嵌.【详解】正方形的一个内角度数为,正六边形的一个内角度数为,需要的多边形的一个内角度数为,需要的多边形的一个外角度数为,第三个正多边形的边数为,故答案为:12.【点睛】本题主要考查了平面镶嵌,多边形的内角和、外角和,关键是掌握多边形镶嵌成平面图形的条件:同一顶点处的几个角之和为;正多边形的边数为360除以一个外角度数.12.已知,则______.解析:1【分析】利用平方差公式分解因式,将x-2y=1代入,去括号合并即可得到结果.【详解】解:∵x-2y=1,∴x2-4y-4y2=(x+2y)(x-2y)-4y=x+2y-4y=x-2y=1.故答案为:1.【点睛】此题考查了因式分解的应用,熟练掌握平方差公式是解本题的关键.13.若方程组的解为x、y,且x+y>0,则k的取值范围是__________.解析:k>-3【分析】本题可将两式相加,得到6x+6y=k+3,根据x+y的取值,可得出k的值.【详解】两式相加得:6x+6y=k+3,∵x+y>0∴6x+6y=6(x+y)>0,即k+3>0,∴k>-3,故答案为:k>-3.【点睛】本题考查的是二元一次方程的解的性质,通过化简得到x+y的形式,再根据x+y>0求得k的取值.14.在平面直角坐标系中,点、的坐标为:、,若线段最短,则的值为______.答案:B解析:-3【分析】点B是一个定点,表示直线y=3上的任意一点,根据垂线段最短确定AB与直线y=3垂直,然后即可确定a的值.【详解】解:∵点是一个定点,表示直线y=3上的任意一点,且线段AB最短,∴AB与直线y=3垂直.∴点A的横坐标与点B的横坐标相等.∴.故答案为:.【点睛】本题考查平面直角坐标系中根据点的坐标确定点的位置和垂线段最短,熟练掌握以上知识点是解题关键.15.若等腰三角形的周长为20cm,那么底边x的取值范围是______.答案:【分析】设等腰三角形的腰长为a,根据等腰三角形的性质及三角形的三边关系进行求解即可.【详解】解:设等腰三角形的腰长为a,根据题意得:,根据三角形的三边关系得:,解得,;故答案为.解析:【分析】设等腰三角形的腰长为a,根据等腰三角形的性质及三角形的三边关系进行求解即可.【详解】解:设等腰三角形的腰长为a,根据题意得:,根据三角形的三边关系得:,解得,;故答案为.【点睛】本题主要考查等腰三角形的性质、三角形的三边关系及一元一次不等式组的解法,熟练掌握等腰三角形的性质、三角形的三边关系及一元一次不等式组的解法是解题的关键.16.如图,若BO、CO分别是∠ABC、∠ACB的三等分线,也就是∠OBC=∠ABC,∠OCB=∠ACB,∠A=72°,则∠BOC=______°.答案:144【分析】根据三角形的内角和定理求出∠ABC+∠ACB,求出∠OBC+∠OCB,然后根据三角形内角和定理求出∠BOC即可.【详解】解:∵∠A=72°,∴∠ABC+∠ACB=180°﹣∠解析:144【分析】根据三角形的内角和定理求出∠ABC+∠ACB,求出∠OBC+∠OCB,然后根据三角形内角和定理求出∠BOC即可.【详解】解:∵∠A=72°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣72°=108°,∵∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×108°=36°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣36°=144°,故答案为:144.【点睛】本题考查了三角形的内角和定理,根据定理求出∠ABC+∠ACB以及∠OBC+∠OCB是解题的关键.17.计算:(1);(2)(﹣2x2)3+x2•x4+(﹣3x3)2.答案:(1)0;(2)2x6.【分析】(1)根据负指数幂,零指数幂,绝对值的运算法则进行化简运算即可;(2)根据积的乘方,同底数幂的乘法法则进行运算即可.【详解】(1)原式==0;(2)原式解析:(1)0;(2)2x6.【分析】(1)根据负指数幂,零指数幂,绝对值的运算法则进行化简运算即可;(2)根据积的乘方,同底数幂的乘法法则进行运算即可.【详解】(1)原式==0;(2)原式=﹣8x6+x6+9x6=2x6.【点睛】本题主要考查了实数的混合运算,其中涉及到了零指数幂,负指数幂,绝对值,积的乘方,同底数幂的乘法等知识点,熟悉掌握运算的法则是解题的关键.18.因式分解:(1)(2)答案:(1);(2)【分析】(1)先提取公因式2,然后运用完全平方公式分解因式即可;(2)运用平方差公式因式分解即可.【详解】解:(1);(2).【点睛】本题主要考查提公因式法与公解析:(1);(2)【分析】(1)先提取公因式2,然后运用完全平方公式分解因式即可;(2)运用平方差公式因式分解即可.【详解】解:(1);(2).【点睛】本题主要考查提公因式法与公式法因式分解,熟知完全平方公式与平方差公式的结构特点时解题的关键,注意结果要分解完全.19.解方程组:(1);(2).答案:(1);(2)【分析】(1)应用代入消元法,求出方程组的解是多少即可.(2)应用加减消元法,求出方程组的解是多少即可.【详解】解:(1),①代入②,可得:,解得,把代入①,解得,原解析:(1);(2)【分析】(1)应用代入消元法,求出方程组的解是多少即可.(2)应用加减消元法,求出方程组的解是多少即可.【详解】解:(1),①代入②,可得:,解得,把代入①,解得,原方程组的解是.(2),①②,可得,解得,把代入①,解得,原方程组的解是.【点睛】此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.20.解不等式组:.答案:【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解不等式①得:,解不等式②得:,不等式组的解集为.【点睛】解析:【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解不等式①得:,解不等式②得:,不等式组的解集为.【点睛】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.三、解答题21.如图1,D为△ABC的边BC上一点,若∠ADC=∠BAC,(1)求证:∠DAC=∠B;(2)如图2,若AE平分∠BAD,在图中找出与∠EAC相等的角,并加以证明.答案:(1)见解析;(2)∠EAC=∠AEC,见解析【分析】(1)根据三角形内角和定理和∠ADC=∠BAC,即可证得;(2)∠EAC=∠AEC,首先根据角平分线的定义得出再利用三角形的外角得出结合(解析:(1)见解析;(2)∠EAC=∠AEC,见解析【分析】(1)根据三角形内角和定理和∠ADC=∠BAC,即可证得;(2)∠EAC=∠AEC,首先根据角平分线的定义得出再利用三角形的外角得出结合(1)的结论∠DAC=∠B,即可证得.【详解】(1)证明:∵,∴又∵∠ADC=∠BAC,∴;(2)∠EAC=∠AEC,证明:∵AE平分∴∴又∵∴.【点睛】本题主要考查三角形内角和定理,三角形外角的性质,角平分线的定义,解题关键是熟练掌握三角形内角和定理,三角形外角的性质,角平分线的定义.三角形外角的性质:三角形一个外角等于与它不相邻的两个内角的和.22.快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元;两种机器人的单价与每小时分拣快递的数量如下表:甲型机器人乙型机器人购买单价(万元/台)mn每小时拣快递数量(件)12001000(1)求购买甲、乙两种型号的机器人所需的单价m和n分别为多少万元/台?(2)若该公司计划购买这两种型号的机器人共8台,购买甲型机器人不超过4台,并且使这8台机器人每小时分拣快递件数总和不少于8400件,则该公司有几种购买方案?哪种方案费用最低,最低费用是多少万元?答案:(1)甲、乙两种型号的机器人每台价格分别是6万元、4万元;(2)公司有3种购买方案,分别是购买甲型机器人2台,乙型机器人6台,购买甲型机器人3台,乙型机器人5台,购买甲型机器人4台,乙型机器人4台;解析:(1)甲、乙两种型号的机器人每台价格分别是6万元、4万元;(2)公司有3种购买方案,分别是购买甲型机器人2台,乙型机器人6台,购买甲型机器人3台,乙型机器人5台,购买甲型机器人4台,乙型机器人4台;该公司购买甲型机器人2台,乙型机器人6台这个方案费用最低,最低费用是36万元【分析】(1)根据甲型机器人1台,乙型机器人2台,共需14万元和购买甲型机器人2台,乙型机器人3台,共需24万元,列出方程组,进行求解即可;(2)设该公可购买甲型机器人a台,乙型机器人(8−a)台,根据两种型号的机器人共8台,每小时分拣快递件数总和不少于8400件,列出不等式,求出a的取值范围,再利用一次函数找到费用最低值.【详解】解:(1)根据题意得:,解得:,答:甲、乙两种型号的机器人每台价格分别是6万元、4万元.(2)设该公可购买甲型机器人a台,乙型机器人台,根据题意得:,解得:,因为,a为正整数,∴a的取值为2,3,4,∴该公司有3种购买方案,分别是购买甲型机器人2台,乙型机器人6台,购买甲型机器人3台,乙型机器人5台,购买甲型机器人4台,乙型机器人4台,设该公司的购买费用为w万元,则,∵,∴w随a的增大而增大,当时,w最小,(万元),∴该公司购买甲型机器人2台,乙型机器人6台这个方案费用最低,最低费用是36万元.【点睛】此题考查了二元一次方程组、一元一次不等式组、一次函数的应用,分析题意,根据关键描述语,找到合适的数量关系是解决问题的关键.23.用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等)作侧面和底面、做成如图2的竖式和横式的两种无盖的长方体容器,(1)现有长方形铁片2014张,正方形铁片1176张,如果将两种铁片刚好全部用完,那么可加工成竖式和横式长方体容器各有几个?(2)现有长方形铁片a张,正方形铁片b张,如果加工这两种容器若干个,恰好将两种铁片刚好全部用完.则的值可能是()A.2019B.2020C.2021D.2022(3)给长方体容器加盖可以加工成铁盒.先工厂仓库有35张铁皮可以裁剪成长方形和正方形铁片,用来加工铁盒,已知1张铁皮可裁剪出3张长方形铁片或4张正方形铁片,也可以裁剪出1张长方形铁片和2张正方形铁片.请问怎样充分利用这35张铁皮,最多可以加工成多少个铁盒?答案:(1)竖式长方体铁容器100个,横式长方体铁容器538个;(2)B;(3)19个【分析】(1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,根据加工的两种长方体铁容器共用了长方形铁片20解析:(1)竖式长方体铁容器100个,横式长方体铁容器538个;(2)B;(3)19个【分析】(1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,根据加工的两种长方体铁容器共用了长方形铁片2014张、正方形铁片1176张,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设竖式纸盒c个,横式纸盒d个,由题意列出方程组可求解.(3)设做长方形铁片的铁板为m块,做正方形铁片的铁板为n块,由铁板的总数量及所需长方形铁片的数量为正方形铁皮的2倍,即可得出关于m,n的二元一次方程组,解之即可得出m,n的值,取其整数部分再将剩余铁板按一张铁板裁出1个长方形铁片和2个正方形铁片处理,即可得出结论.【详解】解:(1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,依题意,得:,解得:,答:可以加工竖式长方体铁容器100个,横式长方体铁容器538个.(2)设竖式纸盒c个,横式纸盒d个,根据题意得:,∴5c+5d=5(c+d)=a+b,∴a+b是5的倍数,可能是2020,故选B;(3)设做长方形铁片的铁板为m块,做正方形铁片的铁板为n块,依题意,得:,解得:,∵在这35块铁板中,25块做长方形铁片可做25×3=75(张),9块做正方形铁片可做9×4=36(张),剩下1块可裁出1张长方形铁片和2张正方形铁片,∴共做长方形铁片75+1=76(张),正方形铁片36+2=38(张),∴可做铁盒76÷4=19(个).答:最多可以加工成19个铁盒.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:找准等量关系,正确列出二元一次方程(组).24.如图,平分,平分,请判断与的位置关系并说明理由;如图,当且与的位置关系保持不变,移动直角顶点,使,当直角顶点点移动时,问与否存在确定的数量关系?并说明理由.如图,为线段上一定点,点为直线上一动点且与的位置关系保持不变,①当点在射线上运动时(点除外),与有何数量关系?猜想结论并说明理由.②当点在射线的反向延长线上运动时(点除外),与有何数量关系?直接写出猜想结论,不需说明理由.答案:(1)详见解析;(2)∠BAE+∠MCD=90°,理由详见解析;(3)详见解析.【详解】试题分析:(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再解析:(1)详见解析;(2)∠BAE+∠MCD=90°,理由详见解析;(3)详见解析.【详解】试题分析:(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,故可得出结论;(2)过E作EF∥AB,根据平行线的性质可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出结论;(3)根据AB∥CD可知∠BAC+∠ACD=180°,∠QPC+∠PQC+∠PCQ=180°,故∠BAC=∠PQC+∠QPC.试题解析:证明:(1)∵CE平分∠ACD,AE平分∠BAC,∴∠BAC=2∠EAC,∠ACD=2∠ACE.∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180,∴AB∥CD;(2)∠BAE+∠MCD=90°.证明如下:过E作EF∥AB.∵AB∥CD,∴EF∥∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE.∵∠E=90°,∴∠BAE+∠ECD=90°.∵∠MCE=∠ECD,∴∠BAE+∠MCD=90°;(3)①∠BAC=∠PQC+∠QPC.理由如下:如图3:∵AB∥CD,∴∠BAC+∠ACD=180°.∵∠QPC+∠PQC+∠PCQ=180°,∴∠BAC=∠PQC+∠QPC;②∠PQC+∠QPC+∠BAC=180°.理由如下:如图4:∵AB∥CD,∴∠BAC=∠ACQ.∵∠PQC+∠PCQ+∠ACQ=180°,∴∠PQC+∠QPC+∠BAC=180°.点睛:本题考查了平行线的性质,根据题意作出平行线是解答此题的关键.25.(1)思考探究:如图,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,已知∠ABC=70°,∠ACD=100°.求∠A和∠P的度数.(2)类比探究:如图,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,已知∠P=n°.求∠A的度数(用含n的式子表示).(3)拓展迁移:已知,在四边形ABCD中,四边形ABCD的内角∠ABC与外角∠DCE的平分线所在直线相交于点P,∠P=n°,请画出图形;并探究出∠A+∠D的度数(用含n的式子表示).答案:(1)∠A=30°,∠P=15°;(2)∠A=2n°;(3)画图见解析;∠A+∠D=180°+2n°或180°﹣2n°.【分析】(1)根据三角形内角和定理可以算出∠A的大小,再根据角平分线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论