版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(完整版)数学苏教七年级下册期末试卷经典及解析一、选择题1.下列各式中,计算正确的是()A.(a3)2=a5 B.a2+a3=a5 C.(ab2)3=ab6 D.a2•a3=a52.如图,与是同旁内角的是()A. B. C. D.3.若方程组的解中的的值比的值的相反数大1,则为()A.3 B.-3 C.2 D.-24.若,则下列不等式一定成立的是()A. B. C. D.5.若关于x的一元一次不等式组无解,则a的取值范围是()A.a>2 B.a≥2 C.a<﹣2 D.a≤﹣26.给出下列四个命题,其中真命题的个数为()①多边形的外角和小于内角和;②如果ab,那么abab0;③两直线平行,同位角相等;④如果a,b是实数,那么A.1 B.2 C.3 D.47.有一列数:,若,从第2个数起,每一个数都等于“1与它前面的那个数的差的倒数”,那么的值为()A. B. C. D.38.下列说法:①如果,则;②;③若,,则;④若,则;⑤若关于x的方程只有一个解,则m的值为3.其中,正确命题的个数是()A.1 B.2 C.3 D.4二、填空题9.___________.10.以下四个命题:①在同一平面内,过一点有且只有一条直线与已知直线垂直;②两条直线被第三条直线所截,同旁内角互补;③数轴上的每一个点都表示一个实数;④如果点的坐标满足,那么点一定在第二象限.其中正确命题的序号为___.11.一个正多边形的每个外角为60°,那么这个正多边形的内角和是_____.12.若x﹣y=5,xy=6,则x2y﹣xy2=_________;13.如果关于,的二元一次方程组的解满足,则的取值范围为_______________.14.如图,中,,,,.点是线段上的一个动点,则的最小值为______.15.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3=_____.16.如图,在中,、分别为、的中点,若的面积为,则的面积为________.17.计算:;18.因式分解:①②19.解方程组(1)(2)20.解不等式组:,把它的解集在数轴上表示出来并写出它的负整数解.三、解答题21.阅读理解,补全推理依据.已知:如图,点E在直线DF上,点B在直线AC上,∠1=∠2,∠3=∠4求证:∠A=∠F证明:∵∠1=∠2(已知)∠2=∠DGF()∴∠1=∠DGF(等量代换)∴BD∥CE()∴∠3+∠C=180°()又∵∠3=∠4(已知)∴∠4+∠C=180°(等量代换)∴DF∥AC()∴∠A=∠F(两直线平行,内错角相等)22.快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元;两种机器人的单价与每小时分拣快递的数量如下表:甲型机器人乙型机器人购买单价(万元/台)mn每小时拣快递数量(件)12001000(1)求购买甲、乙两种型号的机器人所需的单价m和n分别为多少万元/台?(2)若该公司计划购买这两种型号的机器人共8台,购买甲型机器人不超过4台,并且使这8台机器人每小时分拣快递件数总和不少于8400件,则该公司有几种购买方案?哪种方案费用最低,最低费用是多少万元?23.对于三个数,,,表示,,这三个数的平均数,表示,,这三个数中最小的数,如:,;,.解决下列问题:(1)填空:______;(2)若,求的取值范围;(3)①若,那么______;②根据①,你发现结论“若,那么______”(填,,大小关系);③运用②解决问题:若,求的值.24.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B在射线OM上运动,A、B不与点O重合,如图1,已知AC、BC分别是∠BAP和∠ABM角的平分线,(1)点A、B在运动的过程中,∠ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的大小.(2)如图2,将△ABC沿直线AB折叠,若点C落在直线PQ上,则∠ABO=________,如图3,将△ABC沿直线AB折叠,若点C落在直线MN上,则∠ABO=________(3)如图4,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其反向延长线交于E、F,则∠EAF=;在△AEF中,如果有一个角是另一个角的倍,求∠ABO的度数.25.已知:如图1直线、被直线所截,.(1)求证:;(2)如图2,点E在,之间的直线上,P、Q分别在直线、上,连接、,平分,平分,则和之间有什么数量关系,请直接写出你的结论;(3)如图3,在(2)的条件下,过P点作交于点H,连接,若平分,,求的度数.【参考答案】一、选择题1.D解析:D【分析】直接利用积的乘方运算法则,合并同类项的法则,幂的乘方运算法则、同底数幂的乘法运算法则分别计算即可答案.【详解】解:A、(a3)2=a6,故此选项错误,不合题意;B、a2+a3,无法合并,故此选项错误,不合题意;C、(ab2)3=a3b6,故此选项错误,不合题意;D、a2•a3=a5,故此选项正确,符合题意.故选:D.【点睛】本题考查幂的乘方与积的乘方,合并同类项法则,同底数幂的乘法,解题关键是掌握相关运算法则.2.C解析:C【分析】根据同旁内角的概念:两条直线被第三条直线所截,若两个角都在两直线之间,并且在第三条直线的同旁,据此可排除选项.【详解】解:与是同旁内角的是;故选C.【点睛】本题主要考查同旁内角的概念,熟练掌握同旁内角的概念是解题的关键.3.A解析:A【分析】所谓方程组的解,指的是该数值满足方程组中的每一方程.解出方程组的解,再列出关于两解的等式,求出k.【详解】解:由题意,解得x=,y=,∵x的值比y的值的相反数大1,∴x+y=1,即+=1,解得k=3,故选:A.【点睛】本题主要考查解二元一次方程组和它的解,熟练掌握解二元一次方程组的方法是关键.4.C解析:C【分析】直接利用不等式的性质逐一判断即可.【详解】,A、,故错误,该选项不合题意;B、,故错误,该选项不合题意;C、,故正确,该选项符合题意;D、,故错误,该选项不合题意;故选:C.【点睛】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.不等式的性质:不等式的两边同时加上或减去同一个数或字母,不等号方向不变;不等式的两边同时乘以或除以同一个正数,不等号方向不变;不等式的两边同时乘以或除以同一个负数,不等号方向改变.5.D解析:D【分析】先把a当作已知条件表示出不等式的解集,再由不等式组无解即可得出结论.【详解】解:,由①得,x>﹣2;由②得,x<a,∵不等式组无解,∴a≤﹣2.故选:D.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.A解析:A【分析】根据多边形的内角和、不等式的性质、平行线的性质和零指数幂判断即可.【详解】解:①多边形的外角和不一定小于内角和,四边形的内角和等于外角和,原命题是假命题;②如果0>a>b,那么(a+b)(a-b)<0,原命题是假命题;③两直线平行,同位角相等,是真命题;④如果a,b是实数,且a+b≠0,那么(a+b)0=1,原命题是假命题.故选A.【点睛】考查了命题与定理的知识,解题的关键是了解多边形的内角和、不等式的性质、平行线的性质和零指数幂,难度较小.7.C解析:C【分析】根据每一个数都等于1与它前面那个数的差的倒数多列举几个数字,找出规律即可.【详解】解:a1=,,a2=,,a3=3,,a4=,…,从上面的规律可以看出每三个数一循环,2021÷3=673......2,∴a2021=a2=,故选:C.【点睛】本题主要考查数字的变化规律,总结归纳数字的变化规律是解题的关键.8.C解析:C【分析】根据幂的运算法则判断①是否正确,根据分数的定义判断②是否正确,根据绝对值的性质判断③和④是否正确,根据解绝对值方程判断⑤是否正确.【详解】解:∵,∴,故①错误;,故②正确;∵,∴是非正数,∵,∴是非负数,∴,则,∴,故③正确;∵,∴a和b异号,∴,故④正确;若,则,解得,若,则,解得,若,则,解得,若,解得,那么方程的解是,成立,若,解得,那么方程的解是,成立,故⑤错误,正确的命题有3个.故选:C.【点睛】本题考查分数的定义,绝对值的性质,幂的运算法则,解绝对值方程,解题的关键是熟练掌握这些知识点.二、填空题9.【分析】根据单项式乘单项式即可得出答案.【详解】故答案为:.【点睛】本题考查的是单项式乘单项式法则:系数相乘,相同字母的指数相加.10.①③【分析】依次分析判断即可得到答案.【详解】①在同一平面内,过一点有且只有一条直线与已知直线垂直,故该项正确;②两条平行线被第三条直线所截,同旁内角互补,故该项错误;③数轴上的每一个点都表示一个实数,故该项正确;④如果点的坐标满足,则x与y异号,那么点P在第二或第四象限,故该项错误;故答案为:①③.【点睛】此题考查命题的正确与否,正确掌握各知识点并熟练运用解题是关键.11.720°.【详解】【分析】先利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可.【详解】这个正多边形的边数为=6,所以这个正多边形的内角和=(6﹣2)×180°=720°,故答案为720°.【点睛】本题考查了多边形内角与外角:内角和定理:(n﹣2)•180(n≥3)且n为整数);多边形的外角和等于360度.12.15【分析】直接将原式变形,提取公因式,进而分解因式得出即可.【详解】∵x﹣y=5,xy=6,∴.故答案是15.【点睛】本题主要考查了因式分解的提取公因式法,运用公式是解题的关键.13.k>3【分析】先把方程组的两个方程相加求出x+y=k+1,再解不等式即可解答.【详解】解:由方程组解得:x+y=k+1,由x+y>4,得:k+1>4,解得:k>3.则k的取值范围为k>3;故答案为:k>3.【点睛】本题考查了二元一次方程组的解和一元一次不等式,解决本题的关键是解二元一次方程组.14.C解析:【分析】当CP⊥AB时,CP的值最小,利用面积法求解即可.【详解】解:在Rt△ABC中,∠ACB=90°,AC=5,BC=12,AB=13,当CP⊥AB时,CP的值最小,此时:△ABC的面积=•AB•CP=•AC•BC,∴13CP=5×12,∴PC=,故答案为:.【点睛】本题主要考查了垂线段最短和三角形的面积公式,解题的关键是学会利用面积法求高.15.32°.【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:(5﹣解析:32°.【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:(5﹣2)×180°=108°,则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2=32°.故答案是:32°.【点睛】本题主要考查了多边形内角和与外角定理的应用,准确分析图形中角的关系式解题的关键.16.6【分析】根据中线将三角形面积分为相等的两部分可知:△ACD是△CDE的面积的2倍,△ABC的面积是△ACD的面积的2倍,依此即可求解.【详解】∵D、E分别是BC,AD的中点,∴S△CDE解析:6【分析】根据中线将三角形面积分为相等的两部分可知:△ACD是△CDE的面积的2倍,△ABC的面积是△ACD的面积的2倍,依此即可求解.【详解】∵D、E分别是BC,AD的中点,∴S△CDE=S△ACD,S△ACD=S△ABC,∴S△CDE=S△ABC=×24=6.故答案为:6.【点睛】本题考查了三角形的面积和中线的性质:三角形的中线将三角形分为相等的两部分,知道中线将三角形面积分为相等的两部分是解题的关键.17.(1);(2)【分析】(1)直接利用整式的混合运算法则计算得出答案;(2)利用负整数指数幂,零指数幂和积的乘方的逆用计算法则求解即可.【详解】解:(1)原式;(2)原式【点睛】解析:(1);(2)【分析】(1)直接利用整式的混合运算法则计算得出答案;(2)利用负整数指数幂,零指数幂和积的乘方的逆用计算法则求解即可.【详解】解:(1)原式;(2)原式【点睛】此题主要考查了整式的混合运算,负整数指数幂,零指数幂和积的乘方的逆用,正确掌握相关运算法则是解题关键.18.①x(x+2y)(x-2y);②(x+y-1)(x-y+1)【分析】①先提取公因式,然后运用平方差公式因式分解即可;②先运用完全平方公式将括号里因式分解,然后运用平方差公式因式分解即可.【详解析:①x(x+2y)(x-2y);②(x+y-1)(x-y+1)【分析】①先提取公因式,然后运用平方差公式因式分解即可;②先运用完全平方公式将括号里因式分解,然后运用平方差公式因式分解即可.【详解】解:①;②.【点睛】本题考查了提公因式法因式分解与公式法因式分解,熟知乘法公式的结构特点是解题的关键.19.(1);(2)【分析】(1)方程组利用代入消元法求解即可;(2)方程组利用加减消元法求解即可.【详解】解:(1),将②代入①得:,解得:,代入②中,解得:,∴方程组的解为:;(2解析:(1);(2)【分析】(1)方程组利用代入消元法求解即可;(2)方程组利用加减消元法求解即可.【详解】解:(1),将②代入①得:,解得:,代入②中,解得:,∴方程组的解为:;(2)方程组化简得,②×3-①得:,代入②中,解得:,∴方程组的解为:.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.﹣2<x≤3,图见解析,负整数解为-1.【分析】先分别求出两个不等式的解集,然后在数轴上表示出来,即可求解.【详解】解:,由①得:x>﹣2,由②得:x≤3,∴不等式组的解集为﹣2<x≤解析:﹣2<x≤3,图见解析,负整数解为-1.【分析】先分别求出两个不等式的解集,然后在数轴上表示出来,即可求解.【详解】解:,由①得:x>﹣2,由②得:x≤3,∴不等式组的解集为﹣2<x≤3.把解集在数轴上表示:∴不等式组的负整数解为﹣1.【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组的基本步骤是解题的关键.三、解答题21.对顶角相等;同位角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行【分析】先证明,得出同旁内角互补,再由已知得出,证出,即可得出结论.【详解】解:(已知)(对顶角相等)解析:对顶角相等;同位角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行【分析】先证明,得出同旁内角互补,再由已知得出,证出,即可得出结论.【详解】解:(已知)(对顶角相等)等量代换(同位角相等,两直线平行)(两直线平行,同旁内角互补)又(已知)(等量代换)(同旁内角互补,两直线平行)(两直线平行,内错角相等);故答案为:对顶角相等;同位角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行【点睛】本题考查了平行线的判定与性质、对顶角相等的性质;解题的关键是熟练掌握平行线的判定与性质,注意两者的区别.22.(1)甲、乙两种型号的机器人每台价格分别是6万元、4万元;(2)公司有3种购买方案,分别是购买甲型机器人2台,乙型机器人6台,购买甲型机器人3台,乙型机器人5台,购买甲型机器人4台,乙型机器人4台;解析:(1)甲、乙两种型号的机器人每台价格分别是6万元、4万元;(2)公司有3种购买方案,分别是购买甲型机器人2台,乙型机器人6台,购买甲型机器人3台,乙型机器人5台,购买甲型机器人4台,乙型机器人4台;该公司购买甲型机器人2台,乙型机器人6台这个方案费用最低,最低费用是36万元【分析】(1)根据甲型机器人1台,乙型机器人2台,共需14万元和购买甲型机器人2台,乙型机器人3台,共需24万元,列出方程组,进行求解即可;(2)设该公可购买甲型机器人a台,乙型机器人(8−a)台,根据两种型号的机器人共8台,每小时分拣快递件数总和不少于8400件,列出不等式,求出a的取值范围,再利用一次函数找到费用最低值.【详解】解:(1)根据题意得:,解得:,答:甲、乙两种型号的机器人每台价格分别是6万元、4万元.(2)设该公可购买甲型机器人a台,乙型机器人台,根据题意得:,解得:,因为,a为正整数,∴a的取值为2,3,4,∴该公司有3种购买方案,分别是购买甲型机器人2台,乙型机器人6台,购买甲型机器人3台,乙型机器人5台,购买甲型机器人4台,乙型机器人4台,设该公司的购买费用为w万元,则,∵,∴w随a的增大而增大,当时,w最小,(万元),∴该公司购买甲型机器人2台,乙型机器人6台这个方案费用最低,最低费用是36万元.【点睛】此题考查了二元一次方程组、一元一次不等式组、一次函数的应用,分析题意,根据关键描述语,找到合适的数量关系是解决问题的关键.23.(1);(2);(3)①1,②,③【分析】(1)先求出这些数的值,再根据运算规则即可得出答案;(2)先根据运算规则列出不等式组,再进行求解即可得出答案;(3)根据题中规定的表示,,这三个数的解析:(1);(2);(3)①1,②,③【分析】(1)先求出这些数的值,再根据运算规则即可得出答案;(2)先根据运算规则列出不等式组,再进行求解即可得出答案;(3)根据题中规定的表示,,这三个数的平均数,表示,,这三个数中最小的数,列出方程组即可求解.【详解】(1),,故答案为:-4;(2)由题意得:,解得:,则x的取值范围是:;(3),,,;若,则;根据得:,解得:,则,故答案为:1,.【点睛】本题考查了一元一次不等式组的应用,解题关键是读懂题意,根据题意结合方程和不等式去求解,考查综合应用能力.24.(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠解析:(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠PAB+∠ABM=270°,根据角平分线的定义得到∠BAC=∠PAB,∠ABC=∠ABM,于是得到结论;(2)由于将△ABC沿直线AB折叠,若点C落在直线PQ上,得到∠CAB=∠BAQ,由角平分线的定义得到∠PAC=∠CAB,即可得到结论;根据将△ABC沿直线AB折叠,若点C落在直线MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到结论;(3)由∠BAO与∠BOQ的角平分线相交于E可得出∠E与∠ABO的关系,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的倍分情况进行分类讨论即可.【详解】解:(1)∠ACB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠ABM=270°,∵AC、BC分别是∠BAP和∠ABM角的平分线,∴∠BAC=∠PAB,∠ABC=∠ABM,∴∠BAC+∠ABC=(∠PAB+∠ABM)=135°,∴∠ACB=45°;(2)∵将△ABC沿直线AB折叠,若点C落在直线PQ上,∴∠CAB=∠BAQ,∵AC平分∠PAB,∴∠PAC=∠CAB,∴∠PAC=∠CAB=∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∵将△ABC沿直线AB折叠,若点C落在直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年陕西省选调生招录备考题库(面向中国科学技术大学)及一套参考答案详解
- 2026中国农业银行校园招聘备考题库有答案详解
- 2026中国工商银行国际结算单证中心秋季校园招聘备考题库附答案详解(突破训练)
- 2025内蒙古通辽市科左后旗第二批招聘社区工作者5人备考题库附答案详解(完整版)
- 2026中国建设银行运营数据中心校园招聘20人备考题库含答案详解(能力提升)
- 中国建设银行建信金融资产投资有限公司2026年度校园招聘8人备考题库及完整答案详解一套
- 2026中国民生银行南京分行全球校园招聘备考题库附答案详解(轻巧夺冠)
- 2025广西柳州市柳北区白露街道办事处招聘编外合同制人员1人备考题库含答案详解(培优)
- 2025杭州市上城区人民政府南星街道办事处编外人员招聘9人备考题库及1套参考答案详解
- 2025广西百色市乐业县消防救援大队招聘乐业县消防救援综合服务中心管理人员3人备考题库附答案详解(满分必刷)
- 2025广东广州市海珠区社区专职工作人员招聘48人备考题库及答案详解(历年真题)
- 2025年担保机构面试题库及答案
- 2025江苏镇江市京口产业投资发展集团有限公司招聘2人备考题库含答案详解(考试直接用)
- 纯净水是否纯净课件
- 年会合同协议书范本
- 医院护理实习生培训计划
- 2025伊春伊美区人民检察院公开招聘聘用制书记员3人笔试考试参考试题及答案解析
- 2.4 自由落体运动(练题型:9大题型)(原卷版)-2025~2026学年高一上学期物理讲与练(人教版2019必修第一册)
- 2025四川成都广播影视集团有限责任公司第二批次招聘18人考试笔试备考试题及答案解析
- 架梁施工安全培训课件
- 吸收合并协议书范本
评论
0/150
提交评论