版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学苏教版七年级下册期末测试试题经典及答案解析一、选择题1.下列运算正确的是()A.(a2)6=a8 B.a2•a5=a7 C.a5﹣a3=a2 D.a4÷a3=a7答案:B解析:B【分析】分别根据幂的乘方运算法则,同底数幂的乘法法则,合并同类项法则以及同底数幂的除法法则逐一判断即可.【详解】解:A.(a2)6=a12,故本选项不合题意;B.a2•a5=a7,故本选项符合题意;C.a5与-a3不是同类项,所以不能合并,故本选项不合题意;D.a4÷a3=a,故本选项不合题意;故选:B.【点睛】本题考查了合并同类项,同底数幂的乘除法以及幂的乘方,掌握相关运算法则是解答本题的关键.2.如图,下列说法不正确的是()A.∠1与∠3是对顶角 B.∠2与∠6是同位角C.∠3与∠4是内错角 D.∠3与∠5是同旁内角答案:B解析:B【分析】根据对顶角定义:如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角;内错角定义:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角;同位角定义:两条直线被第三条直线所截,两个角分别在两条被截线同一方,并且都在截线的同侧,具有这样位置关系的一对角叫做同位角;同旁内角定义:两条直线被第三条直线所截,若两个角都在两直线之间,并且在截线的同侧,则这样的一对角叫做同旁内角;进行分析判断即可.【详解】解答:解:A、∠1与∠3是对顶角,故原题说法正确,不符合题意;B、∠2与∠6不是同位角,故原题说法错误,符合题意;C、∠3与∠4是内错角,故原题说法正确,不符合题意;D、∠3与∠5是同旁内角,故原题说法正确,不符合题意;故选:B.【点睛】此题主要考查了对顶角、内错角、同位角、同旁内角,关键是掌握这几种角的定义.3.若,则x﹣y的值是()A.24 B.1 C.﹣1 D.0答案:B解析:B【解析】【分析】方程组相减即可求出x﹣y的值【详解】解:,②﹣①得:x﹣y=1,故选:B.【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.4.下列各式从左边到右边的变形,是因式分解且分解正确的是()A.(a+1)(a-1)=a2-1 B.ab+ac+1=a(b+c)+1C.a2-2a-3=(a-1)(a-3) D.a2-8a+16=(a-4)2答案:D解析:D【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】解:A、是多项式乘法,不是因式分解,原变形错误,故此选项不符合题意;B、右边不是整式的积的形式,不是因式分解,原变形错误,故此选项不符合题意;C、a2-2a-3=(a+1)(a-3)分解时出现符号错误,原变形错误,故此选项不符合题意;D、符合因式分解的定义,是因式分解,原变形正确,故此选项符合题意.故选:D.【点睛】本题考查了因式分解.解题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.5.已知关于x的不等式组恰有5个整数解,则t的取值范围是()A.﹣6<t< B. C. D.答案:C解析:C【分析】本题首先求解不等式组的公共解集,继而按照整数解要求求解本题.【详解】∵,∴;∵,∴;∴不等式组的解集是:.∵不等式组恰有5个整数解,∴这5个整数解只能为15,16,17,18,19,故有,求解得:.故选:C.【点睛】本题考查含参不等式组的求解,解题关键在于求解不等式时需将参数当做常量进行运算,其次注意运算仔细即可.6.下列命题是真命题的是(
)A.同旁内角相等,两直线平行 B.若,则C.如果,那么 D.平行于同一直线的两直线平行答案:D解析:D【解析】分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.详解:A.∵同旁内角互补,两直线平行,故是假命题;B.∵若,则,故是假命题;C.∵-1>-2满足,但,故是假命题;D.∵平行于同一直线的两直线平行,故是真命题;故选D.点睛:此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.定义一种对正整数n的“F”运算:①当n为奇数时,结果为;②当n为偶数时,结果为;(其中k是使为奇数的正整数),并且运算可以重复进行,例如,取.则:若,则第2021次“F运算”的结果是()A.68 B.78 C.88 D.98答案:D解析:D【分析】根据题意,可以写出前几次的运算结果,从而可以发现数字的变化特点,然后即可写出第2021次“F运算”的结果.【详解】解:本题提供的“F运算”,需要对正整数n分情况(奇数、偶数)循环计算,由于n=49为奇数应先进行F①运算,即3×49+5=152(偶数),需再进行F②运算,即152÷23=19(奇数),再进行F①运算,得到3×19+5=62(偶数),再进行F②运算,即62÷21=31(奇数),再进行F①运算,得到3×31+5=98(偶数),再进行F②运算,即98÷21=49,再进行F①运算,得到3×49+5=152(偶数),…,即第1次运算结果为152,…,第4次运算结果为31,第5次运算结果为98,…,可以发现第6次运算结果为49,第7次运算结果为152,则6次一循环,2021÷6=336…5,则第2021次“F运算”的结果是98.故选:D.【点睛】本题考查了整式的运算能力,既渗透了转化思想、分类思想,又蕴涵了次数、结果规律探索问题,检测学生阅读理解、抄写、应用能力.8.如图,将一张三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列说法错误的是()A. B.C. D.答案:A解析:A【分析】由翻折变换的性质,三角形内角和定理逐项进行判断即可.【详解】解:由翻折变换可得,CD=ED,BC=BE,∠C=∠BED,∠CBD=∠EBD,∠BDC=∠BDE,∵AD+CD=AC,∴AD+DE=AC≠BD,因此选项A说法错误,符合题意;∵AE+BE=AB,∴AE+BC=AB,因此选项B说法正确,不符合题意;∵∠A+∠ADE=∠BED,∴∠A+∠ADE=∠C,因此选项C说法正确,不符合题意;∵∠BDC=∠A+∠ABD,∠BDC=∠BDE,∠CBD=∠ABD,∴∠A+∠CBD=∠BDE,因此选项D说法正确,不符合题意;故选:A.【点睛】本题考查翻折变换、三角形内角和定理,掌握翻折变换的性质、三角形内角和定理以及等量代换是正确判断的前提.二、填空题9.计算:________.解析:6x3【分析】根据单项式乘单项式的计算法则进行计算求解.【详解】解:原式=6x3,故答案为:6x3.【点睛】本题考查单项式乘单项式,掌握计算法则是解题基础.10.命题“内错角相等”是________命题(填“真”、“假”).解析:假【分析】根据“两直线平行,内错角相等”即可判断此命题的真假.【详解】∵两直线平行,内错角相等,∴若两直线不平行,内错角不相等,∴此命题为假命题,故答案为:假.【点睛】本题考查了命题与定理,掌握判断命题真假的方法,熟知平行线的性质是解答本题的关键.11.若一个多边形的内角和比外角和大180°,则这个多边形的边数为_____.解析:五【分析】设该多边形的边数为n,则其内角和为(n﹣2)•180°,外角和为360°,根据题意列方程求解即可.【详解】解:设多边形的边数是n,根据题意得,(n﹣2)•180°﹣360°=180°,解得n=5,故答案为:五.【点睛】本题考查多边形的内角和与外角和,掌握多边形的内角和公式以及多边形的外角和是解题的关键.12.已知多项式可分解为两个一次因式的积,则______________.解析:-18【分析】设原式可分解为(x+ky+c)(x+ly+d),
展开后得出x2+(k+l)xy+kly2+(c+d)x+(cl+dk)y+cd,推出cd=-24,c+d=-5,cl+dk=43,k+l=7,a=kl求出即可.【详解】解:∵多项式的第一项是x2,因此原式可分解为:
(x+ky+c)(x+ly+d)∵
(x+ky+c)(x+ly+d)=x2+(k+l)xy+kly2+(c+d)x+(cl+dk)y+cd,∴cd=-24,c+d=-5,∴c=3,d=-8,∵cl+dk=43,∴3l-8k=43,∵k+l=7,∴k=-2,l=9,∴a=kl=-18故答案为-18.【点睛】此题考查因式分解的概念,根据题意得出cd=-24,c+d=-5,cl+dk=43,k+l=7,a=kl是解决问题的关键.13.已知关于x,y的二元一次方程组满足,则a的取值范围是____.解析:.【分析】根据题目中方程组的的特点,将两个方程作差,即可用含a的代数式表示出,再根据,即可求得的取值范围,本题得以解决.【详解】解:①-②,得∵∴,解得,故答案为:.【点睛】本题考查解一元一次不等式,二元一次方程组的解,熟悉相关性质是解答本题的关键.14.如图,从位置P到直线公路MN共有四条小道PA、PB、PC、PD,若用相同的速度行走,能最快到达公路MN的小道是__________,理由是__________.答案:B解析:PB垂线段最短【分析】根据垂线段最短,即可求解【详解】根据垂线段最短得,能最快到达公路MN的小道是PB,故答案为:PB,垂线段最短.【点睛】本题考查了直线外一点到直线的距离,熟练掌握直线外一点到直线的距离垂线段最短是解题关键.15.中华人民共和国国旗上的五角星的五个角的和是__________度.答案:180°【分析】根据每个内角的度数和内角的个数即可求出答案.【详解】解:如图示,连接,,,,五边形为正五边形所以每个内角为.五个角的和为.故答案是:180°.【点睛】解析:180°【分析】根据每个内角的度数和内角的个数即可求出答案.【详解】解:如图示,连接,,,,五边形为正五边形所以每个内角为.五个角的和为.故答案是:180°.【点睛】本题考查的是正多边形的性质,外角的性质,等腰三角形的性质,知道五角星的每一个角都相等是解题的关键.16.一副直角三角尺叠放如图1所示,现将的三角尺固定不动,将含的三角尺绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行.如图2:当时,.则其它所有可能符合条件的度数为_____________.答案:和【分析】根据题意画出不同情况的图形,然后分别根据平行的性质求解即可.【详解】解:如图:当时,;如图:当时,;如图:当时,∵,∴.故填和.【点睛】本题考查平行线的性质、旋解析:和【分析】根据题意画出不同情况的图形,然后分别根据平行的性质求解即可.【详解】解:如图:当时,;如图:当时,;如图:当时,∵,∴.故填和.【点睛】本题考查平行线的性质、旋转的性质等知识点,根据题意画出不同情况的图形是解答本题的关键.17.计算:(1)(2)答案:(1)9;(2)【分析】(1)根据同底数幂的乘除法法则、零指数幂、负整数指数幂的法则计算;(2)根据单项式乘多项式的运算法则解答.【详解】解:(1);(2).【点睛】本题考查解析:(1)9;(2)【分析】(1)根据同底数幂的乘除法法则、零指数幂、负整数指数幂的法则计算;(2)根据单项式乘多项式的运算法则解答.【详解】解:(1);(2).【点睛】本题考查的是实数的运算、整式的乘法,掌握同底数幂的乘除法法则、负整数指数幂、单项式乘多项式的运算法则是解题的关键.18.因式分解:(1)(2)n2(m﹣2)+4(2﹣m)答案:(1)(2)【分析】(1)先提取公因式,然后再利用完全平方公式进行分解即可;(2)先提取公因式,然后再利用平方差公式进行分解即可【详解】解:(1)=,=.(2)n2(m﹣2)+4解析:(1)(2)【分析】(1)先提取公因式,然后再利用完全平方公式进行分解即可;(2)先提取公因式,然后再利用平方差公式进行分解即可【详解】解:(1)=,=.(2)n2(m﹣2)+4(2﹣m),=,=.【点睛】本题考查了因式分解,解题关键是掌握因式分解的顺序和方法,注意:因式分解要彻底.19.(1)解方程组(2)解方程组答案:(1);(2).【分析】(1)用加减消元法解方程组;(2)用加减消元法即可求解.【详解】(1)解:,①×2得:,③+②得:,解得:,把代入①得:,所以原方程组的解为:;(2)解解析:(1);(2).【分析】(1)用加减消元法解方程组;(2)用加减消元法即可求解.【详解】(1)解:,①×2得:,③+②得:,解得:,把代入①得:,所以原方程组的解为:;(2)解:,①×3+②×2得:,解得:,把代入①得:,所以原方程组的解为:.【点睛】本题考查二元一次方程组的解法,熟练掌握加减消元法是关键.20.解不等式组,并在数轴上表示它们的解集.答案:-4≤x<3,数轴见解析【分析】分别求出不等式的解集,再求出其公共部分,然后在数轴上表示出来.【详解】解:由得:x<3,由得:x≥-4,不等式组的解集为:,解析:-4≤x<3,数轴见解析【分析】分别求出不等式的解集,再求出其公共部分,然后在数轴上表示出来.【详解】解:由得:x<3,由得:x≥-4,不等式组的解集为:,在数轴上表示为:【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.三、解答题21.填写下列推理中的空格:已知:如图,点、、、在同一条直线上,,.求证:证明:∵(已知)∴__________()又∵(已知)∴__________()∴____________________()∴()答案:;两直线平行,同位角相等;;等量代换;;;同位角相等,两直线平行;两直线平行,同旁内角互补【分析】根据平行线的判定与性质,结合图形,不难得出结果.【详解】证明:如图所示:∵AE∥BF(已解析:;两直线平行,同位角相等;;等量代换;;;同位角相等,两直线平行;两直线平行,同旁内角互补【分析】根据平行线的判定与性质,结合图形,不难得出结果.【详解】证明:如图所示:∵AE∥BF(已知),∴∠E=∠BHC(两直线平行,同位角相等).又∵∠E=∠F(已知),∴∠F=∠BHC(等量代换).∴EC∥DF(同位角相等,两直线平行).∴∠ECD+∠D=180°(两直线平行,同旁内角互补).故答案为:∠BHC;两直线平行,同位角相等;∠BHC;等量代换;EC;DF;同位角相等,两直线平行;两直线平行,同旁内角互补.【点睛】本题主要考查平行线的判定与性质,解答的关键是对平行线的判定与性质的掌握与熟练应用.22.如图,某工厂与、两地有公路、铁路相连.这家工厂近期从地购买一批原料运回工厂,制成的产品再全部运到地.已知公路的运价为2元(吨千米),铁路的运价为1.5元(吨千米),且这两次运输共支出公路运费48000元,铁路运费207000元.(1)求从地购买的原料和运到地的产品各多少吨?(2)如果购买这批原料的价格为每吨1千元,且这家工厂希望这批产品全部售出后获得不低于20万元的利润(利润销售额原料费运输费),那么每吨产品的最低售价应定为多少元(结果取整数)?答案:(1)从地购买的原料为600吨和运到地的产品为400吨;(2)每吨产品的最低售价应定2638元.【分析】(1)根据公路的运价为2元(吨千米),铁路的运价为1.5元(吨千米),且这两次运输共支出公解析:(1)从地购买的原料为600吨和运到地的产品为400吨;(2)每吨产品的最低售价应定2638元.【分析】(1)根据公路的运价为2元(吨千米),铁路的运价为1.5元(吨千米),且这两次运输共支出公路运费48000元,铁路运费207000元和图中的数据,可以列出相应的二元一次方程组,然后求解即可;(2)根据购买这批原料的价格为每吨1千元,且这家工厂希望这批产品全部售出后获得不低于20万元的利润,可以列出相应的不等式,从而可以求得每吨产品的售价的取值范围,从而可以求得每吨产品的最低售价应定为多少元.【详解】解:(1)设从地购买的原料为吨和运到地的产品为吨,由题意可得,,解得,答:从地购买的原料为600吨和运到地的产品为400吨;(2)设每吨产品的售价为元,由题意可得,,解得,为整数,的最小值是2638,答:每吨产品的最低售价应定2638元.【点睛】本题考查一元一次不等式的应用、二元一次方程组的应用,解题的关键是明确题意,找出等量关系和不等关系,列出相应的方程组和不等式.23.阅读理解:例1.解方程|x|=2,因为在数轴上到原点的距离为2的点对应的数为±2,所以方程|x|=2的解为x=±2.例2.解不等式|x﹣1|>2,在数轴上找出|x﹣1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为﹣1或3,所以方程|x﹣1|=2的解为x=﹣1或x=3,因此不等式|x﹣1|>2的解集为x<﹣1或x>3.参考阅读材料,解答下列问题:(1)方程|x﹣2|=3的解为;(2)解不等式:|x﹣2|≤1.(3)解不等式:|x﹣4|+|x+2|>8.(4)对于任意数x,若不等式|x+2|+|x﹣4|>a恒成立,求a的取值范围.答案:(1)x=-1或x=5;(2)1≤x≤3;(3)x>5或x<-3;(4)a≥6【分析】(1)利用在数轴上到2对应的点的距离等于3的点对应的数求解即可;(2)先求出|x-2|=3的解,再求|x-解析:(1)x=-1或x=5;(2)1≤x≤3;(3)x>5或x<-3;(4)a≥6【分析】(1)利用在数轴上到2对应的点的距离等于3的点对应的数求解即可;(2)先求出|x-2|=3的解,再求|x-2|≤3的解集即可;(3)先在数轴上找出|x-4|+|x+2|=8的解,即可得出不等式|x-4|+|x+2|>8的解集;(4)原问题转化为:a大于或等于|x+2|+|x-4|最大值,进行分类讨论,即可解答.【详解】解:(1)∵在数轴上到2对应的点的距离等于3的点对应的数为-1或5,∴方程|x-2|=3的解为x=-1或x=5;(2)在数轴上找出|x-2|=1的解.∵在数轴上到2对应的点的距离等于1的点对应的数为1或3,∴方程|x-2|=1的解为x=1或x=3,∴不等式|x-2|≤1的解集为1≤x≤3.(3)在数轴上找出|x-4|+|x+2|=8的解.由绝对值的几何意义知,该方程就是求在数轴上到4和-2对应的点的距离之和等于8的点对应的x的值.∵在数轴上4和-2对应的点的距离为6,∴满足方程的x对应的点在4的右边或-2的左边.若x对应的点在4的右边,可得x=5;若x对应的点在-2的左边,可得x=-3,∴方程|x-4|+|x+2|=8的解是x=5或x=-3,∴不等式|x-4|+|x+2|>8的解集为x>5或x<-3.(4)原问题转化为:a大于或等于|x+2|+|x-4|最大值.当x≥4时,|x+2|+|x-4|=x+2+x-4=2x-2,当-2<x<4,|x+2|+|x-4|=x+2-x+4=6,当x≤-2时,|x+2|+|x-4|=-x-2-x+4=-2x+2,即|x+2|+|x-4|的最大值为6.故a≥6.【点睛】本题主要考查了绝对值,方程及不等式的知识,是一道材料分析题,通过阅读材料,同学们应当深刻理解绝对值得几何意义,结合数轴,通过数形结合对材料进行分析来解答题目.24.(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图1,MN是平面镜,若入射光线AO与水平镜面夹角为∠1,反射光线OB与水平镜面夹角为∠2,则∠1=∠2.(现象解释)如图2,有两块平面镜OM,ON,且OM⊥ON,入射光线AB经过两次反射,得到反射光线CD.求证AB∥CD.(尝试探究)如图3,有两块平面镜OM,ON,且∠MON=55,入射光线AB经过两次反射,得到反射光线CD,光线AB与CD相交于点E,求∠BEC的大小.(深入思考)如图4,有两块平面镜OM,ON,且∠MONα,入射光线AB经过两次反射,得到反射光线CD,光线AB与CD所在的直线相交于点E,∠BED=β,α与β之间满足的等量关系是.(直接写出结果)答案:【现象解释】见解析;【尝试探究】BEC70;【深入思考】2.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【现象解释】见解析;【尝试探究】BEC70;【深入思考】2.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD;[尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α.【详解】[现象解释]如图2,∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【尝试探究】如图3,在△OBC中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如图4,β=2α,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【点睛】本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.25.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.(探究1):如图1,在ΔABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90º+∠A,(请补齐空白处)理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=∠ABC,_________________,在ΔABC中,∠A+∠ABC+∠ACB=180º.∴∠1+∠2=(∠ABC+∠ACB)=(180º-∠A)=90º-∠A,∴∠BOC=180º-(∠1+∠2)=180º-(________)=90º+∠A.(探究2):如图2,已知O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?请说明理由.(应用):如图3,在RtΔAOB中,∠AOB=90º,已知AB不平行与CD,AC、BD分别是∠BAO和∠ABO的角平分线,又CE、DE分别是∠ACD和∠BDC的角平分线,则∠E=_______;(拓展):如图4,直线MN与直线PQ相交于O,∠MOQ=60º,点A在射线OP上运动,点B在射线OM上运动,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线交于E、F,在ΔAEF中,如果有一个角是另一个角的4倍,则∠ABO=______.答案:【探究1】∠2=∠ACB,90º-∠A;【探究2】∠BOC=90°﹣∠A,理由见解析;【应用】22.5°;【拓展】45°或36°.【分析】【探究1】根据角平分线的定义可得∠1=∠ABC,∠2=∠解析:【探究1】∠2=∠ACB,90º-∠A;【探究2】∠BOC=90°﹣∠A,理由见解析;【应用】22.5°;【拓展】45°或36°.【分析】【探究1】根据角平分线的定义可得∠1=∠ABC,∠2=∠ACB,根据三角形的内角和定理可得∠1+∠2=90º-∠A,再根据三角形的内角和定理即可得出结论;【探究2】如图2,由三角形的外角性质和角平分线的定义可得∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),然后再根据三角形的内角和定理即可得出结论;【应用】延长AC与BD,设交点为G,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年吉林职业技术学院单招职业技能考试题库附答案
- 2026年江南影视艺术职业学院单招职业适应性测试模拟测试卷附答案
- 2026年湖南工业职业技术学院单招职业倾向性测试题库附答案
- 2025年石家庄财经职业学院单招(计算机)测试备考题库附答案
- 2025年内蒙古巴彦淖尔盟单招职业适应性考试题库附答案
- 2026年品牌形象管理合同
- 2025年郑州城市职业学院单招(计算机)测试模拟题库附答案
- 2025年兰州科技职业学院单招职业倾向性考试模拟测试卷附答案
- 2026年塔里木职业技术学院单招(计算机)测试模拟题库及答案1套
- 2025年内蒙古科技职业学院单招职业技能考试题库附答案
- 2025 易凯资本中国健康产业白皮书 -生物制造篇(与茅台基金联合发布)
- 产业经济学(苏东坡版)课后习题及答案
- T/CECS 10227-2022绿色建材评价屋面绿化材料
- 区域医学检验中心项目建设方案
- 小学四年级安全教育上册教学计划小学四年级安全教育教案
- 个人优势与劣势分析
- VCR接头锁紧工作程序
- 2025阀门装配工艺规程
- 非计划拔管风险评估及护理
- 小学数学教学中融入中国传统文化的实践研究
- 2020-2025年中国激光测量仪行业投资研究分析及发展前景预测报告
评论
0/150
提交评论