版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学苏教七年级下册期末解答题压轴真题模拟试题经典及答案解析一、解答题1.如图,在中,是高,是角平分线,,.()求、和的度数.()若图形发生了变化,已知的两个角度数改为:当,,则__________.当,时,则__________.当,时,则__________.当,时,则__________.()若和的度数改为用字母和来表示,你能找到与和之间的关系吗?请直接写出你发现的结论.2.如图,已知直线a∥b,∠ABC=100°,BD平分∠ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P.问∠1的度数与∠EPB的度数又怎样的关系?(特殊化)(1)当∠1=40°,交点P在直线a、直线b之间,求∠EPB的度数;(2)当∠1=70°,求∠EPB的度数;(一般化)(3)当∠1=n°,求∠EPB的度数(直接用含n的代数式表示).3.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.4.如果三角形的两个内角与满足,那么我们称这样的三角形是“准互余三角形”.(1)如图1,在中,,是的角平分线,求证:是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:①在中,若,,,则是“准互余三角形”;②若是“准互余三角形”,,,则;③“准互余三角形”一定是钝角三角形.其中正确的结论是___________(填写所有正确说法的序号);(3)如图2,,为直线上两点,点在直线外,且.若是直线上一点,且是“准互余三角形”,请直接写出的度数.5.如图①所示,在三角形纸片中,,,将纸片的一角折叠,使点落在内的点处.(1)若,________.(2)如图①,若各个角度不确定,试猜想,,之间的数量关系,直接写出结论.②当点落在四边形外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,,,之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的和是________.6.阅读材料:如图1,点是直线上一点,上方的四边形中,,延长,,探究与的数量关系,并证明.小白的想法是:“作(如图2),通过推理可以得到,从而得出结论”.请按照小白的想法完成解答:拓展延伸:保留原题条件不变,平分,反向延长,交的平分线于点(如图3),设,请直接写出的度数(用含的式子表示).7.在△ABC中,∠ABC=∠ACB,点D在直线BC上(不与B、C重合),点E在直线AC上(不与A、C重合),且∠ADE=∠AED.(1)如图1,若∠ABC=50°,∠AED=80°,则∠CDE=°,此时,=.(2)若点D在BC边上(点B、C除外)运动(如图1),试探究∠BAD与∠CDE的数量关系,并说明理由;(3)若点D在线段BC的延长线上,点E在线段AC的延长线上(如图2),其余条件不变,请直接写出∠BAD与∠CDE的数量关系:.(4)若点D在线段CB的延长线上(如图3),点E在直线AC上,∠BAD=26°,其余条件不变,则∠CDE=(友情提醒:可利用图3画图分析).8.已知,如图:射线分别与直线、相交于、两点,的角平分线与直线相交于点,射线交于点,设,且.(1)________,________;直线与的位置关系是______;(2)如图,若点是射线上任意一点,且,试找出与之间存在一个什么确定的数量关系?并证明你的结论.(3)若将图中的射线绕着端点逆时针方向旋转(如图)分别与、相交于点和点时,作的角平分线与射线相交于点,问在旋转的过程中的值变不变?若不变,请求出其值;若变化,请说明理由.9.(想一想)在三角形的三条重要线段(高、中线、角平分线)中,能把三角形面积平分的是三角形的______;(比一比)如图,已知,点、在直线上,点、在直线上,连接、、、,与相交于点,则的面积_______的面积;(填“>”“<”或“=”)(用一用)如图所示,学校种植园有一块四边形试验田STPQ.现准备过点修一条笔直的小路(小路面积忽略不计),将试验田分成面积相等的两部分,安排“拾穗班”、“锄禾班”两班种植蔬菜,进行劳动实践,王老师提醒同学们先把四边形转化为同面积的三角形,再把三角形的面积二等分即可.请你在下图中画出小路,并保留作图痕迹.10.(1)思考探究:如图,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,已知∠ABC=70°,∠ACD=100°.求∠A和∠P的度数.(2)类比探究:如图,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,已知∠P=n°.求∠A的度数(用含n的式子表示).(3)拓展迁移:已知,在四边形ABCD中,四边形ABCD的内角∠ABC与外角∠DCE的平分线所在直线相交于点P,∠P=n°,请画出图形;并探究出∠A+∠D的度数(用含n的式子表示).【参考答案】一、解答题1.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,.【分析】(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,.【分析】(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;(2)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,则前三问利用即可得出答案,第4问利用即可得出答案;(3)按照(2)的方法,将相应的数换成字母即可得出答案.【详解】(1)∵,,∴.∵平分,∴.∵是高,,,,.(2)当,时,∵,,∴.∵平分,∴.∵是高,,,;当,时,∵,,∴.∵平分,∴.∵是高,,,;当,时,∵,,∴.∵平分,∴.∵是高,,,;当,时,∵,,∴.∵平分,∴.∵是高,,,.(3)当时,即时,∵,,∴.∵平分,∴.∵是高,,,;当时,即时,∵,,∴.∵平分,∴.∵是高,,,;综上所述,当时,;当时,.【点睛】本题主要考查三角形内角和定理和三角形的角平分线,高,掌握三角形内角和定理和直角三角形两锐角互余是解题的关键.2.(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当解析:(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|.【分析】(1)利用外角和角平分线的性质直接可求解;(2)分三种情况讨论:①当交点P在直线b的下方时;②当交点P在直线a,b之间时;③当交点P在直线a的上方时;分别画出图形求解;(3)结合(2)的探究,分两种情况得到结论:①当交点P在直线a,b之间时;②当交点P在直线a上方或直线b下方时;【详解】解:(1)∵BD平分∠ABC,∴∠ABD=∠DBC=∠ABC=50°,∵∠EPB是△PFB的外角,∴∠EPB=∠PFB+∠PBF=∠1+(180°﹣50°)=170°;(2)①当交点P在直线b的下方时:∠EPB=∠1﹣50°=20°;②当交点P在直线a,b之间时:∠EPB=50°+(180°﹣∠1)=160°;③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|;【点睛】考查知识点:平行线的性质;三角形外角性质.根据动点P的位置,分类画图,结合图形求解是解决本题的关键.数形结合思想的运用是解题的突破口.3.(1),理由见解析;(2)当点P在B、O两点之间时,;当点P在射线AM上时,.【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C解析:(1),理由见解析;(2)当点P在B、O两点之间时,;当点P在射线AM上时,.【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.【详解】解:(1)∠CPD=∠α+∠β,理由如下:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β.(2)当点P在A、M两点之间时,∠CPD=∠β-∠α.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α;当点P在B、O两点之间时,∠CPD=∠α-∠β.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.4.(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110°【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角解析:(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110°【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角形”的定义,分类讨论:①2∠A+∠ABC=90°;②∠A+2∠APB=90°;③2∠APB+∠ABC=90°;④2∠A+∠APB=90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案.【详解】(1)证明:∵在中,,∴,∵BD是的角平分线,∴,∴,∴是“准互余三角形”;(2)①∵,∴,∴是“准互余三角形”,故①正确;②∵,,∴,∴不是“准互余三角形”,故②错误;③设三角形的三个内角分别为,且,∵三角形是“准互余三角形”,∴或,∴,∴,∴“准互余三角形”一定是钝角三角形,故③正确;综上所述,①③正确,故答案为:①③;(3)∠APB的度数是10°或20°或40°或110°;如图①,当2∠A+∠ABC=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A=20°,∴∠APB=110°;如图②,当∠A+2∠APB=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,∴∠APB=40°;如图③,当2∠APB+∠ABC=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠APB=20°;如图④,当2∠A+∠APB=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;综上,∠APB的度数是10°或20°或40°或110°时,是“准互余三角形”.【点睛】本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.5.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′解析:(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,由两个平角∠AEB和∠ADC得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解.【详解】解:(1)∵,,∴∠A′=∠A=180°-(65°+70°)=45°,∴∠A′ED+∠A′DE=180°-∠A′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE)=360°-310°=50°;(2)①,理由如下由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A′DE-∠AED-∠A′ED=360°-2∠ADE-2∠AED,∴∠1+∠2=2(180°-∠ADE-∠AED)=2∠A;②,理由如下:∵是的一个外角∴.∵是的一个外角∴又∵∴(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.6.阅读材料:,见解析;拓展延伸:.【分析】(1)作,,,由平行线性质可得,结合已知,可证,进而得到,从而,,将代入可得.(2)过H点作HP∥MN,可得∠CHA=∠PHA+∠PHC,结合(1)的结解析:阅读材料:,见解析;拓展延伸:.【分析】(1)作,,,由平行线性质可得,结合已知,可证,进而得到,从而,,将代入可得.(2)过H点作HP∥MN,可得∠CHA=∠PHA+∠PHC,结合(1)的结论和CG平分∠ECD可得∠PHC=∠FCH=120°-,即可得.【详解】解:【阅读材料】作,,(如图1).∵,∴.∴.∵,∴.∴.∴.∵,∴.∵,∴.∴,.∴.∵,∴.【拓展延伸】结论:.理由:如图,作,过H点作HP∥MN,∴∠PHA=∠MAH=,由(1)得FC∥MN,∴FC∥HP,∴∠PHC=∠FCH,∵,CG平分∠ECD,∴∠ECG=20°+,∴∠FCH==180°-()-(20°+)=120°-∴∠CHA=∠PHA+∠PHC=+(120°-)=120°-即:.【点评】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.7.(1)30,2;(2)∠BAD=2∠CDE,理由见解析;(3)∠BAD=2∠CDE;(4)77°或13°.【分析】(1)利用三角形内角和定理以及三角形的外角的性质解决问题即可;(2)结论:∠B解析:(1)30,2;(2)∠BAD=2∠CDE,理由见解析;(3)∠BAD=2∠CDE;(4)77°或13°.【分析】(1)利用三角形内角和定理以及三角形的外角的性质解决问题即可;(2)结论:∠BAD=2∠CDE.设∠B=∠C=x,∠AED=∠ADE=y,则∠BAC=180°-2x,∠CDE=yx,∠DAE=180°-2y,推出∠BAD=∠BAC-∠DAE=2y-2x=2(y-x),由此可得结论.(3)如图②中,结论:∠BAD=2∠CDE.解决方法类似(2).(4)分两种情形:①当点E在CA的延长线上,设∠ABC=∠C=x,∠AED=∠ADE=y,则∠BAC=180°-2x,∠CDE=180°-(y+x),∠DAE=180°-2y,由题意,∠BAD=180°-∠BAC-∠DAE=2x+2y-180°=22°,推出x+y=101°,可得结论.②如图④中,当点E在AC的延长线上时,同法可求.【详解】解:(1)如图①中,∵∠ABC=∠ACB=50°,∴∠BAC=180°﹣50°﹣50°=80°,∵∠AED=∠CDE+∠C,∴∠CDE=80°﹣50°=30°,∵∠ADE=∠AED=80°,∴∠DAE=180°﹣80°﹣80°=20°,∴∠BAD=∠BAC﹣∠DAE=80°﹣20°=60°,∴=2.故答案为30,2;(2)结论:∠BAD=2∠CDE.理由:设∠B=∠C=x,∠AED=∠ADE=y,则∠BAC=180°﹣2x,∠CDE=y﹣x,∠DAE=180°﹣2y,∴∠BAD=∠BAC﹣∠DAE=2y﹣2x=2(y﹣x),∴∠BAD=2∠CDE;(3)如图②中,结论:∠BAD=2∠CDE.理由:设∠B=∠ACB=x,∠AED=∠ADE=y,则∠BAC=180°﹣2x,∠CDE=180°﹣(y+x),∠DAE=180°﹣2y,∴∠BAD=∠BAC+∠DAE=360°﹣2(x+y),∴∠BAD=2∠CDE.故答案为:∠BAD=2∠CDE;(4)如图③中,设∠ABC=∠C=x,∠AED=∠ADE=y,则∠BAC=180°﹣2x,∠CDE=180°﹣(y+x),∠DAE=180°﹣2y,∴∠BAD=180°﹣∠BAC﹣∠DAE=2x+2y﹣180°=26°,∴x+y=103°∴∠CDE=180°﹣103°=77°.如图④中,当点E在AC的延长线上时,设∠ABC=∠ACB=x,∠AED=∠ADE=y,则∠ADB=x﹣26°,∠CDE=y﹣(x﹣26°),∵∠ACB=∠CDE+∠AED,∴x=y+y﹣(x﹣26°),∴x﹣y=13°,∴∠CDE=x﹣y=13°故答案为:77°或13°.【点睛】本题属于几何变换综合题,考查了等腰三角形的性质,三角形内角和定理,三角形的外角的性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.8.(1)35,35,平行;(2)∠FMN+∠GHF=180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB∥CD;(2解析:(1)35,35,平行;(2)∠FMN+∠GHF=180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB∥CD;(2)先根据内错角相等证GH∥PN,再根据同旁内角互补和等量代换得出∠FMN+∠GHF=180°;(3)作∠PEM1的平分线交M1Q的延长线于R,先根据同位角相等证ER∥FQ,得∠FQM1=∠R,设∠PER=∠REB=x,∠PM1R=∠RM1B=y,得出∠EPM1=2∠R,即可得=2.【详解】解:(1)∵(α-35)2+|β-α|=0,∴α=β=35,∴∠PFM=∠MFN=35°,∠EMF=35°,∴∠EMF=∠MFN,∴AB∥CD;(2)∠FMN+∠GHF=180°;理由:由(1)得AB∥CD,∴∠MNF=∠PME,∵∠MGH=∠MNF,∴∠PME=∠MGH,∴GH∥PN,∴∠GHM=∠FMN,∵∠GHF+∠GHM=180°,∴∠FMN+∠GHF=180°;(3)的值不变,为2,理由:如图3中,作∠PEM1的平分线交M1Q的延长线于R,∵AB∥CD,∴∠PEM1=∠PFN,∵∠PER=∠PEM1,∠PFQ=∠PFN,∴∠PER=∠PFQ,∴ER∥FQ,∴∠FQM1=∠R,设∠PER=∠REB=x,∠PM1R=∠RM1B=y,则有:,可得∠EPM1=2∠R,∴∠EPM1=2∠FQM1,∴==2.【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.9.想一想:中线;比一比:=;用一用:见解析【分析】想一想:三角形中线把三角形底边等分成两份,过顶点向底边作垂线,高相同;比一比:和共底边BC,,两平行线之间的距离相等,即和高相等;用一用:利用解析:想一想:中线;比一比:=;用一用:见解析【分析】想一想:三角形中线把三角形底边等分成两份,过顶点向底边作垂线,高相同;比一比:和共底边BC,,两平行线之间的距离相等,即和高相等;用一用:利用“想一想”中的中线和“比一比”的平行线进行面积的二等分.【详解】想一想:三角形中线把三角形底边等分成两份,过顶点向底边作垂线,高相同,故能把三角形面积平分的是三角形的中线.比一比:∵∴两平行线之间的距离相等,即A到BC的距离=D到BC的距离又∵和共底边BC∴和同底,等高,面积相等.用一用:如图所示,连接SP,过Q点作QM∥SP,延长TP,交QM与点M,连接SP,取TM的中点N.SN即为所求笔直的小路.证明:∵QM∥SP∴∵TM的中点N∴∴【点睛】本题考查中线和平行线的距离.连接三角形的一个顶点和它所对的边的中点的线段叫做三角形的中线.两条平行线的距离处处相等.10.(1)∠A=30°,∠P=15°;(2)∠A=2n°;(3)画图见解析;∠A+∠D=180°+2n°或180°﹣2n°.【分析】(1)根据三角形内角和定理可以算出∠A的大小,再根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 养老护理中级老年康复护理
- 机器学习在护理决策支持中的应用
- 2025年便携式超声系统租赁合同
- 2025年白酒区域独家合作协议
- 基因水平转移的系统发育分析
- 妇科常用中成药的合理使用
- 地球在宇宙中的位置2课件
- DB36∕T 1485-2025“赣出精 品”品牌建设通 用要求
- 在线教育的可扩展性和资源共享性研究
- 历届4级考试真题及答案
- 2025年大学康复治疗学(运动疗法学)试题及答案
- 胎膜早破的诊断与处理指南
- 进出口货物报关单的填制教案
- 被压迫者的教育学
- 2025年科研伦理与学术规范期末考试试题及参考答案
- 上市公司财务舞弊问题研究-以国美通讯为例
- 2025年国家开放电大行管本科《公共政策概论》期末考试试题及答案
- 2025年纪检监察知识试题库(含答案)
- CJT 288-2017 预制双层不锈钢烟道及烟囱
- 2024年西安市政道桥建设集团有限公司招聘笔试参考题库含答案解析
- 《弹性波动力学》课程教学大纲
评论
0/150
提交评论