版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学苏教七年级下册期末复习质量测试试卷(比较难)答案一、选择题1.下列运算正确的是()A. B. C. D.2.如图,下面结论正确的是()A.和是同位角 B.和是内错角C.和是同旁内角 D.和是内错角3.关于的不等式的解集是,则()A. B.1 C.2 D.34.如果a>b,那么下列结论一定正确的是(
)A.a―3<b—3 B.3―a<3—b C.ac2>bc2
D.a2>b25.若关于的不等式组的解集为,且关于,的二元一次方程组的解满足,则满足条件的所有整数的和为()A. B. C.0 D.36.下列命题中是真命题的是()A.相等的角是对顶角 B.两条直线被第三条直线所截,同位角相等C.直角都相等 D.三角形一个外角大于它任意一个内角7.观察下面一组数:,将这组数排成如图的形式,按照如图规律排下去,则第10行中从左边数第9个数是()第一行:第二行:2;;4第三行:;6;;8;第四行:10;;12;;14;;16A. B.90 C. D.918.如图所示,在四边形纸片ABCD中,∠A=80°,∠B=70°,将纸片沿着MN折叠,使C,D分别落在直线AB上的,处,则∠+∠等于()A.50° B.60° C.70° D.80°二、填空题9.计算:____________.10.以下四个命题:①-的立方根是;②要调查一批灯泡的使用寿命适宜用抽样调查;③两条直线被第三条直线所截,同旁内角互补;④已知∠ABC与其内部一点D,过点D作DE∥BA,作DF∥BC,则∠EDF=∠B.其中假命题的序号______.11.一机器人在平地上按如图设置的程序行走,则该机器人从开始到停止所行走的路程为_____.12.若,则___________.13.已知方程组中,a,b互为相反数,则m的值是_________.14.为了便于游客领略“人从桥上过,如在景中游”的美好意境,某景区拟在如图所示的长方形水池上架设景观桥.若长方形水池的周长为,景观桥宽忽略不计,则小桥总长为________.15.如图,将透明直尺叠放在正五边形之上,若正五边形有两个顶点在直尺的边上,且有一边与直尺的边垂直.则_______°.16.如图,中,,,,则______.17.计算:(1)(2)(﹣a)2•a﹣(2a)3(3)(x+1)2﹣(x+2)(x﹣2)18.因式分解:(1)a3b﹣9ab;(2)x4﹣8x2y2+16y4;19.解方程组(1)(2)20.解不等式组:,并写出该不等式组的非负整数解.三、解答题21.如图,点C、D分别在射线OA、OB上,不与点O重合,(1)如图1,探究、、的数量关系,并证明你的结论;(2)如图2,作,与的角平分线交于点P,若,,请用含,的式子表示.(直接写出结果)22.陈老师所在的学校为加强学生的体育锻炼,需要购买若干个足球和篮球,他曾两次在某商场购买过足球和篮球,两次购买足球和篮球的数量和费用如下表:足球数量(个)篮球数量(个)总费用(元)第一次35550第二次67860(1)求足球和篮球的标价;(2)陈老师计划购买足球a个,篮球b个,可用资金最高为4000元;①如果计划购买足球和篮球共60个,最多购买篮球多少个?②如果可用资金恰好全部用完,且购买足球数量不超过篮球数量,则陈老师最多可购买足球________个.23.阅读材料:如果x是一个有理数,我们把不超过x的最大整数记作[x].例如,[3.2]=3,[5]=5,[-2.1]=-3.那么,x=[x]+a,其中0≤a<1.例如,3.2=[3.2]+0.2,5=[5]+0,-2.1=[-2.1]+0.9.请你解决下列问题:(1)[4.8]=,[-6.5]=;(2)如果[x]=3,那么x的取值范围是;(3)如果[5x-2]=3x+1,那么x的值是;(4)如果x=[x]+a,其中0≤a<1,且4a=[x]+1,求x的值.24.如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.(1)当∠A为70°时,∵∠ACD-∠ABD=∠______∴∠ACD-∠ABD=______°∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1CD-∠A1BD=(∠ACD-∠ABD)∴∠A1=______°;(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、An,请写出∠A与∠An的数量关系______;(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=______.(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q-∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.25.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.(探究1):如图1,在ΔABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90º+∠A,(请补齐空白处)理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=∠ABC,_________________,在ΔABC中,∠A+∠ABC+∠ACB=180º.∴∠1+∠2=(∠ABC+∠ACB)=(180º-∠A)=90º-∠A,∴∠BOC=180º-(∠1+∠2)=180º-(________)=90º+∠A.(探究2):如图2,已知O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?请说明理由.(应用):如图3,在RtΔAOB中,∠AOB=90º,已知AB不平行与CD,AC、BD分别是∠BAO和∠ABO的角平分线,又CE、DE分别是∠ACD和∠BDC的角平分线,则∠E=_______;(拓展):如图4,直线MN与直线PQ相交于O,∠MOQ=60º,点A在射线OP上运动,点B在射线OM上运动,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线交于E、F,在ΔAEF中,如果有一个角是另一个角的4倍,则∠ABO=______.【参考答案】一、选择题1.C解析:C【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则分别计算得出答案.【详解】解:A.a2+a3=a2+a3,故A选项错误;B.a2•a3=a5,故B选项错误;C.a3÷a2=a,故C选项正确;D.(a2)3=a6,故D选项错误,故选:C.【点睛】此题主要考查了同底数幂的乘除运算以及幂的乘方运算,正确掌握相关运算法则是解题关键.2.D解析:D【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角;内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角;同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角作答【详解】解:A、由同位角的概念可知,∠1与∠2不是同位角,故A选项错误;B、由内错角的概念可知,∠2与∠3不是内错角,故B选项错误;C、和是对顶角,故C错误;D、由内错角的概念可知,∠1与∠4是内错角,故D选项正确.故选:D.【点睛】本题考查了同位角、内错角、同旁内角的概念;解题的关键是理解三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形.3.D解析:D【分析】根据题意得到a-2=1,解方程即可.【详解】解:∵关于x的不等式x>a-2的解集是x>1,∴a-2=1,∴a=3,故选:D.【点睛】本题考查了一元一次不等式的解集,根据题意得到关于a的方程是解题的关键.4.B解析:B【分析】利用不等式的基本性质判断即可.【详解】如果a>b,那么a-3>b-3,选项A不正确;如果a>b,那么3-a<3-b,选项B正确;如果a>b,c>0,那么ac>bc,选项C错误;如果a>b>0,那么a2>b2,选项D错误,故选B.【点睛】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.5.A解析:A【分析】先分别求解不等组和二元一次方程组确定a的取值范围,进而确定所有整数a,最后求和即可.【详解】解:由①得:x≤4a由②得x<1又由该不等式组的解集为x≤4a,则4a<1,即a<③+④得y+z=2a+3又由,则2a+3≥-1,即a≥-2所以-2≤a<,即所有整数a有:-2,-1,0∴满足条件的所有整数的和为-2+(-1)+0=-3.故选A.【点睛】本题主要考查了解不等组、解二元一次方程组以及不等式的解集,根据不等组和解二元一次方程组的解满足的条件确定a的取值范围成为解答本题的关键.6.C解析:C【解析】【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】A、错误,对顶角相等但相等的角不一定是对顶角;B、错误,当被截的直线平行时形成的同位角才相等;C.正确,直角都相等,都等于90°;D、三角形的一个外角大于任何一个与之不相邻的内角,故错误.故选C.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、三角形的外角的性质,难度不大.7.B解析:B【分析】奇数为负,偶数为正,每行的最后一个数的绝对值是这个行的行数n的平方,所以第9行最后一个数字的绝对值是81,第10行从左边第9个数是81+9=90.【详解】解:由题意可得:9×9=81,81+9=90,故第10行从左边第9个数是90.故选B.【点睛】本题考查了规律型:数字的变化.解题关键是确定第9行的最后一个数字,同时注意符号的变化.8.B解析:B【分析】首先根据四边形内角和定理可得∠D+∠C=210°,再利用折叠性质可得∠=∠D,∠=∠C,即∠+∠=210°,从而得出∠+∠=150°,最后进一步利用三角形内角和定理求解即可.【详解】∵∠A=80°,∠B=70°,∴∠D+∠C=360°−∠A−∠B=210°,由折叠性质可得:∠=∠D,∠=∠C,∴∠+∠=210°,∴∠+∠=360°−(∠+∠)=150°,∴∠+∠=360°−(∠+∠)−(∠A+∠B)=60°,故选:B.【点睛】本题主要考查了三角形与四边形内角和定理以及折叠的性质,熟练掌握相关概念是解题关键.二、填空题9.【分析】根据单项式乘以单项式的乘法法则计算即可.【详解】;故答案为.【点睛】本题考查了整式的乘法公式,解题的关键熟练掌握单项式乘以单项式的乘法法则.10.A解析:①③④【分析】利用立方根的定义对①进行判断;根据普查和抽样调查的特点对②进行判断;根据平行线的性质对③进行判断.画好符合题意的图形,利用推理的方法判断④.【详解】解:的立方根是,所以①为假命题;要调查一批灯泡的使用寿命适宜用抽样调查,所以②为真命题;两条平行直线被第三条直线所截,同旁内角互补,所以③为假命题;已知∠ABC与其内部一点D,过D点作DE∥BA,作DF∥BC,则或所以④为假命题.理由如下:.故答案为①③④.【点睛】本题考查了命题的“真”“假”判断.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可,掌握以上知识是解题的关键.11.32m【分析】该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.【详解】解:根据题意,360°÷45°=8,则所走的路程是:4×8=32(m).故答案为:32m.【点睛】本题考查了正多边形的外角和定理,理解经过的路线是正多边形是关键.12.10【分析】利用平方差公式分解因式后化简可求解.【详解】解:∵,∴=故答案为10.【点睛】本题主要考查因式分解的应用,将分子分解因式是解题的关键.13.3【分析】首先通过解二元一次方程组解出a,b,然后根据a,b互为相反数即可求出m的值.【详解】解:①+②,可得3a=m+6,解得a=+2,把a=+2代入①,解得b=﹣4,∵a,b互为相反数,∴a+b=0,∴(+2)+(﹣4)=0,解得m=3.故答案为:3【点睛】本题主要考查解二元一次方程组和一元一次方程,正确解出a,b的值是关键.14.150【分析】利用平移的性质直接得出答案即可.【详解】根据题意得出:小桥可以平移到矩形的边上,得出小桥的长等于矩形的长与宽的和,故小桥总长为:300÷2=150(m).故答案为:150.【点睛】本题考查平移,熟练掌握平移的性质是解题关键.15.54°【分析】如图,标注字母,先求解正五边形的内角的大小,再利用平行线的性质及角的和差求解再利用三角形的内角和求解从而利用平行线的性质可得答案.【详解】解:如图,标注字母,由题意得:解析:54°【分析】如图,标注字母,先求解正五边形的内角的大小,再利用平行线的性质及角的和差求解再利用三角形的内角和求解从而利用平行线的性质可得答案.【详解】解:如图,标注字母,由题意得:故答案为:【点睛】本题考查的是平行线的性质,正多边形的内角和,三角形的内角和,掌握利用平行线结合内角和定理进行计算是解题的关键.16.45°【分析】根据∠ACB=90°,∠AEC=∠ACE,∠BCD=∠BDC,则∠A+∠B=90°,∠ACD+∠DCE=∠B+∠BCE,∠A+∠ACD=∠BCE+∠DCE,从而得到2∠DCE=∠A解析:45°【分析】根据∠ACB=90°,∠AEC=∠ACE,∠BCD=∠BDC,则∠A+∠B=90°,∠ACD+∠DCE=∠B+∠BCE,∠A+∠ACD=∠BCE+∠DCE,从而得到2∠DCE=∠A+∠B.【详解】解:∵∠ACB=90°,∠AEC=∠ACE,∠BCD=∠BDC,∴∠A+∠B=90°,∠ACD+∠DCE=∠B+∠BCE,∠A+∠ACD=∠BCE+∠DCE,∴∠B+∠BCE+∠A+∠ACD=∠ACD+∠DCE+∠BCE+∠DCE,∴2∠DCE=∠A+∠B,∴∠DCE=45°,故答案为:45°.【点睛】本题主要考查了三角形内角和定理,三角形外角的性质,解题的关键在于能够熟练掌握相关知识进行求解.17.(1)4;(2)﹣7a3;(3)2x+5【分析】(1)根据零指数幂法则、负整数指数幂法则及乘方的意义计算即可;(2)先根据同底数幂的乘法法则及积的乘方法则计算,再合并同类项即可;(3)先利用解析:(1)4;(2)﹣7a3;(3)2x+5【分析】(1)根据零指数幂法则、负整数指数幂法则及乘方的意义计算即可;(2)先根据同底数幂的乘法法则及积的乘方法则计算,再合并同类项即可;(3)先利用完全平方公式及平方差公式计算,再合并同类项即可.【详解】解:(1)原式===4;(2)原式=a2•a﹣8a3=a3﹣8a3=﹣7a3;(3)原式=x2+2x+1﹣x2+4=2x+5.【点睛】本题考查了实数的混合运算,幂的混合运算以及整式乘法的混合运算,熟练掌握相关运算法则及乘法公式是解决本题的关键.18.(1)ab(a+3)(a-3);(2)(x+2y)2(x-2y)2.【分析】(1)综合利用提取公因式法和平方差公式法进行因式分解即可得;(2)先利用完全平方公式,再利用平方差公式进行因式分解即解析:(1)ab(a+3)(a-3);(2)(x+2y)2(x-2y)2.【分析】(1)综合利用提取公因式法和平方差公式法进行因式分解即可得;(2)先利用完全平方公式,再利用平方差公式进行因式分解即可.【详解】(1)原式;(2)原式.【点睛】本题考查了综合利用提取公因式法和公式法进行因式分解,熟练掌握因式分解的方法是解题关键.19.(1);(2)【分析】(1)方程组利用代入消元法求解即可;(2)方程组利用加减消元法求解即可.【详解】解:(1),将②代入①得:,解得:,代入②中,解得:,∴方程组的解为:;(2解析:(1);(2)【分析】(1)方程组利用代入消元法求解即可;(2)方程组利用加减消元法求解即可.【详解】解:(1),将②代入①得:,解得:,代入②中,解得:,∴方程组的解为:;(2)方程组化简得,②×3-①得:,代入②中,解得:,∴方程组的解为:.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.,0和1【分析】先分别求出两个不等式的解集,可得到不等式组的解集,即可求解【详解】解:解不等式,得:,解不等式,得:,则不等式组的解集为,所以不等式组的非负整数解为0和1.【点睛】解析:,0和1【分析】先分别求出两个不等式的解集,可得到不等式组的解集,即可求解【详解】解:解不等式,得:,解不等式,得:,则不等式组的解集为,所以不等式组的非负整数解为0和1.【点睛】本题主要考查了解一元一次不等式组,熟练掌握解求不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键.三、解答题21.(1),见解析;(2)【分析】(1)如图1,过O点作OG//DF,根据平行线的判定和性质可得∠ODF、∠ACE的数量关系;(2)根据四边形内角和为360°,再根据(2)的结论,以及角平分线的定解析:(1),见解析;(2)【分析】(1)如图1,过O点作OG//DF,根据平行线的判定和性质可得∠ODF、∠ACE的数量关系;(2)根据四边形内角和为360°,再根据(2)的结论,以及角平分线的定义即可求解.【详解】(1),证明:过点O作直线,,.又,,,.又,,,即;(2),DP是的角平分线,.四边形PDOC内角和为,.【点睛】此题考查了平行线的判定和性质,多边形内角和,角平分线的定义,熟练掌握平行线的判定和性质是解题的关键.22.(1)足球的标价为50元,篮球的标价为80元;(2)①最多购买篮球33个;②24个【解析】【分析】(1)设足球的标价为x元,篮球的标价为y元,根据图表列出方程组求出x和y的值;(2)①设购买解析:(1)足球的标价为50元,篮球的标价为80元;(2)①最多购买篮球33个;②24个【解析】【分析】(1)设足球的标价为x元,篮球的标价为y元,根据图表列出方程组求出x和y的值;(2)①设购买篮球b个,根据从该商场一次性购买足球和篮球60个,且总费用不能超过4000元,列出不等式求最大正整数解即可;②设购买足球a个,篮球b个,根据可用资金恰好全部用完,且购买足球数量不超过篮球数量列出不等式,结合a、b均为整数求解即可.【详解】(1)设足球的标价为x元,篮球的标价为y元.根据题意,可得解得:答:足球的标价为50元,篮球的标价为80元;(2)①根据题意可得解得,因为b为整数,所以答:最多购买篮球33个②依题意有:50a+80b=4000且a≤b.所以b=50-a≥a,解得a≤.又b=50-a是整数,所以a是8的倍数,故a最大整数值是24,此时b=35,刚好用完4000元.答:陈老师最多可购买足球24个.【点睛】本题考查了一元一次不等式和二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意一定要考虑a、b均为整数这一隐含条件.23.(1)4,﹣7;(2)3≤x<4;(3);(4)或或或【分析】(1)根据题目中的定义,[x]表示不超过x的最大整数,求出结果即可;(2)根据定义,是大于等于3小于4的数;(3)由得到,求出的解析:(1)4,﹣7;(2)3≤x<4;(3);(4)或或或【分析】(1)根据题目中的定义,[x]表示不超过x的最大整数,求出结果即可;(2)根据定义,是大于等于3小于4的数;(3)由得到,求出的取值范围,再由是整数即可得到的值;(4)由和得,设是整数,即可求出的取值范围,然后分类讨论求出的值即可.【详解】解:(1)∵不超过4.8的最大整数是4,∴,∵不超过的最大整数是,∴故答案是:4,;(2)∵,∴是大于等于3小于4的数,即;(3)∵,∴,解得,∵是整数,∴;(4)∵,∴,∵,∴,即,∵(是整数),∴,∵,∴,解得,当时,,,当时,,,当时,,,当时,,,综上:的值为或或或.【点睛】本题考查新定义问题,不等式组的运用,解题的关键是理解题目中的意义,列出不等式组进行求解.24.(1)∠A;70°;35°;(2)∠A=2n∠An(3)25°(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.【分析】(1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD解析:(1)∠A;70°;35°;(2)∠A=2n∠An(3)25°(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.【分析】(1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;(2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律;(3)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,从而得出结论;(4)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.【详解】解:(1)当∠A为70°时,∵∠ACD-∠ABD=∠A,∴∠ACD-∠ABD=70°,∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线,∴∠A1CD-∠A1BD=(∠ACD-∠ABD)∴∠A1=35°;故答案为:A,70,35;(2)∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,∴∠BAC=2∠A1=80°,∴∠A1=40°,同理可得∠A1=2∠A2,即∠BAC=22∠A2=80°,∴∠A2=20°,∴∠A=2n∠An,故答案为:∠A=2∠An.(3)∵∠ABC+∠DCB=360°-(∠A+∠D),∴∠ABC+(180°-∠DCE)=360°-(∠A+∠D)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,∴360°-(α+β)=180°-2∠F,2∠F=∠A+∠D-180°,∴∠F=(∠A+∠D)-90°,∵∠A+∠D=230°,∴∠F=25°;故答案为:25°.(4)①∠Q+∠A1的值为定值正确.∵∠ACD-∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1=∠A1CD-∠A1BD=∠BAC,∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分线,∴∠QEC+∠QCE=(∠AEC+∠ACE)=∠BAC,∴∠Q=180°-(∠QEC+∠QCE)=180°-∠BAC,∴∠Q+∠A1=180°.【点睛】本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要.25.【探究1】∠2=∠ACB,90º-∠A;【探究2】∠BOC=90°﹣∠A,理由见解析;【应用】22.5°;【拓展】45°或36°.【分析】【探究1】根据角平分线的定义可得∠1=∠ABC,∠2=∠解析:【探究1】∠2=∠ACB,90º-∠A;【探究2】∠BOC=90°﹣∠A,理由见解析;【应用】22.5°;【拓展】45°或36°.【分析】【探究1】根据角平分线的定义可得∠1=∠ABC,∠2=∠ACB,根据三角形的内角和定理可得∠1+∠2=90º-∠A,再根据三角形的内角和定理即可得出结论;【探究2】如图2,由三角形的外角性质和角平分线的定义可得∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),然后再根据三角形的内角和定理即可得出结论;【应用】延长AC与BD,设交点为G,如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026山东泰安市宁阳县兵役登记方法和要求参考考试试题及答案解析
- 2026中国中医科学院中医药数据中心招聘国内高校应届毕业生(京外生源)2人(提前批)备考考试题库及答案解析
- 2025福建省闽西南水资源开发有限责任公司招聘5人参考考试题库及答案解析
- 2025福建省闽西南水资源开发有限责任公司招聘5人备考考试试题及答案解析
- 2026春季广东广州市天河区同仁艺体实验小学教师招聘6人参考笔试题库附答案解析
- 2025年山西省长治市人民医院公开招聘硕士以上专业技术工作人员参考考试题库及答案解析
- 2026年江苏省卫生健康委员会所属事业单位公开招聘工作人员807人备考笔试试题及答案解析
- 2025安徽星瑞齿轮传动有限公司社会招聘2人备考考试试题及答案解析
- 2025四川达州市中心医院招收重症护理进修学员考试备考题库及答案解析
- 2025西安高新区第九初级中学招聘教师模拟笔试试题及答案解析
- 学堂在线 雨课堂 学堂云 海权与制海权 结业考试答案
- 2023年运动康复期末复习-体适能理论与训练(运动康复专业)考试上岸题库历年考点含答案
- 普通机床主传动系统的设计课程设计说明书
- 班组工程进度款申请表
- 四年级阅读训练概括文章主要内容(完美)
- JJG 1033-2007电磁流量计
- GB/T 6541-1986石油产品油对水界面张力测定法(圆环法)
- GB/T 629-1997化学试剂氢氧化钠
- GB/T 37234-2018文件鉴定通用规范
- GB/T 2895-2008塑料聚酯树脂部分酸值和总酸值的测定
- 水利工程监理规划78648
评论
0/150
提交评论