2025年筑牢AI网络安全防线:新风险环境下的韧性构建研究报告(英文版)-德勤_第1页
2025年筑牢AI网络安全防线:新风险环境下的韧性构建研究报告(英文版)-德勤_第2页
2025年筑牢AI网络安全防线:新风险环境下的韧性构建研究报告(英文版)-德勤_第3页
2025年筑牢AI网络安全防线:新风险环境下的韧性构建研究报告(英文版)-德勤_第4页
2025年筑牢AI网络安全防线:新风险环境下的韧性构建研究报告(英文版)-德勤_第5页
已阅读5页,还剩90页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

centrefor

RegulatorystrategyAsiapacific

SafeguardingCybersecurityinAI:

BuildingResilienceinaNewRiskLandscape

December2025

Australia

China(Mainland)

NavigatingtheReport

OverviewoftheRegulatoryLandscape

Recommendations

Clickicontonavigatetotherelevantsection

Introduction

AI

Cybersecurity

DeepDive

Philippines

Thailand

Indonesia

Jurisdictional

Singapore

Vietnam

Japan

Malaysia

SouthKorea

HongKongSAR

India

NewZealand

Taiwan(China)

Contacts

Endnotes

Introduction

Introduction

AICybersecurity

Overview

Recommendations

JurisdictionalDeepDive

However,despitethepotentialrisks,AIalsoprovidesopportunitiestostrengthencybersecurity.AI-enabledtoolscanhelporganisationsdetectissues,improvethesecurityofsoftwareandsystems,andrespondtoincidentsmorequicklyandconsistently.Firmsthatcombinethesecapabilitieswithstronggovernanceandproportionatecontrolswillbebetterpositionedtomanagetheevolvingcyberthreatlandscape.

CybersecurityisnowfirmlyaBoardlevelresponsibility.TheadditionalrisksintroducedbyAImakestrongoversight,clearlinesofaccountability,andBoardfluencyinAItechnologyessential.Thesecapabilitiesareneedednotonlytoprotectcriticaloperationsandmeetregulatoryobligations,butalsotomaintaincustomerandstakeholdertrust.

ThispaperexamineshowAIisimpactingcybersecurityrisk,howsupervisorsinAParerespondingandwhatorganisationscandotobuildstrongerandmoreresilientdefences.Itoutlineskeyattackvectors,emergingregulatoryexpectations,andpracticalstepsforBoardsandseniorexecutivestobolstertheirfirm’scyberresilience.

WhilstthispaperfocusesonAIsecurityconsiderations,itisimportantforfirmstotakeaholisticviewandaddressallAI-relatedriskswhendevelopingtheirtechnologystrategyandAIsystems.

Artificialintelligence(AI)isreshapingthecybersecuritylandscapeacrossAsiaPacific(AP).

Australia

China(Mainland)

HongKongSAR

EvenbeforetheriseofadvancedAI,theincreasingdigitisationofbusinessoperationshadalreadymadecyber-attacksmorefrequent,scalableandeffective.AIisnowamplifyingthistrendbyenablingmaliciousactorstoworkmorequicklyandproducemoreconvincingandadaptiveattacks.Forexample,AIcanhelpgeneratepersuasivephishingmessagesanddeepfakes,analysesystemstoidentifyweaknesses,andadjustattackmethodsinreal-time.Thislowersthebarrierforattackersandincreasesboththespeedandpotentialimpactofacyberincident.

India

Indonesia

Japan

Malaysia

AsorganisationsadoptAIacrosscoreprocesses,theattacksurfaceisalsoexpanding.AIintroducesnewsystemsanddataflowsintotechnologyarchitecture,includingmodeltrainingenvironments,automateddecisionworkflowsandlarge-scaledatapipelines.Thesecomponentscanpotentiallycreateadditionalpointswherevulnerabilitiesmayarise.Further,theAIsystemsarealsosubjecttoattack.Adversariesmaytrytocorruptthedatausedtotrainmodels,influenceordistortmodeloutputs,orexploitweaknessesinhowthesystemsinterpretandrespondtouserinputs.

NewZealand

Philippines

Singapore

Thesethreatscreateclearbusinessrisks.AI-relatedcyberincidentscancausefinanciallosses,compromiseintellectualproperty,distortcriticaldecisionoutputs,exposesensitivecustomerdata,anderodeorganisationalreputationandstakeholdertrust.Therefore,asAIadoptiongrows,itiscriticalthatrisksmustbeassessedandmanagedaspartofawidercyberdefencestrategy.

SouthKorea

Taiwan(China)

Thailand

Vietnam

Contacts

Endnotes

03

AISecurityvs.AISafety

Forthepurposesofthisreport,wedefineAIsecurityastheprotectionsthatkeepAIsystemsresilientagainstattacksandmisuse.Thisincludesdefendingagainstadversarialinputs,tampereddata,stolenmodels,andattemptstomanipulateorextractmodeloutputs.

WedistinguishthisfromAIsafety,whichconcernshowanAIsystembehavessuchasitsaccuracy,reliability,fairness,andalignmentwithintendedgoals.

Inpractice,thesetwodomainsoftenoverlap.Weaksafety,suchasamodelthatisbrittle,poorlycalibrated,orpronetohallucinationcancreateopeningsthatattackerscanexploit.Conversely,asecurityfailurelikecompromisedtrainingdataormanipulatedcontentcandegradesafetybychangingasystem’sbehavioranderodingtrustinitsoutputs.

ThispaperfocusesonthecybersecurityrisksassociatedwithAIsystemswhilerecognisingtheseriskscanaffectbroadersafetyoutcomesandvice-versa.

NewZealand

Philippines

Singapore

SouthKorea

Taiwan(China)

Thailand

Vietnam

Contacts

Endnotes

04

Australia

India

Indonesia

Malaysia

Overview

Recommendations

JurisdictionalDeepDive

Japan

China(Mainland)HongKongSAR

Introduction

AICybersecurity

Introduction

AICybersecurity

Overview

Recommendations

JurisdictionalDeepDive

AustraliaChina(Mainland)HongKongSARIndia

IndonesiaJapanMalaysiaNewZealand

AICybersecurity

AICybersecurityRisks

AsorganisationsbegintoadoptandscaleAI,maliciousactorsareevolvingtotargetthesesystems.Sometechniquessuchaspromptinjections,jailbreaksandmodelextractionarerelativelynewandarisefromthewayAImodelsprocessdataandinstructions.Others,includingsupplychaincompromiseortheexploitationofvulnerablecomponents,buildonlongstandingcyber-attackmethods.Nevertheless,theimpactsareamplifiedbyAI’srelianceonexternalmodels,opensourcetoolsandcomplexdatapipelines.Theresultisabroaderandmoredynamicattacksurfacethatcanimpacttheintegrity,confidentialityandreliabilityofAIsystemsandtheprocessestheyunderpin.UnderstandingtheserisksisanimportantfirststepindevelopingthesecuritycontrolsandmonitoringmechanismsneededtokeepAIsystemssafe.

ThetablebelowsummarisessomeofthekeysecurityrisksimpactingAIsystems.

AttacksonModelBehaviour

AttackVector

WhatItIs

HowAttackersExploitIt

WhyItMatters

Promptinjections

MaliciousorcarefullycraftedinstructionsinsertedintopromptsorcontextualdatathatanAImodelreliesontogenerateoutputs.Theseinstructionsareoftenhiddenwithinuserinputs,documents,websitesordatasets

Attackerstrickthemodelintofollowingunintendedinstructionsbyembeddingcommandsinusertext,metadataorexternalcontentpulledintothe

modelIscontext.Thiscanoverrideintendedlogicandcausethemodeltobehaveunpredictably

Promptinjectionscancausethemodeltodisclosesensitiveinformation,performunintendedactions,generateharmfulorunauthorisedoutputsor

underminedownstreamautomatedprocessesthatrelyonmodel-generatedcontent

Jailbreaks

TechniquesthatdeliberatelybypassguardrailsandrestrictionsbuiltintoAIsystems,allowingthemtooutputcontentthatwouldnormallybeblocked

Attackerschainprompts,useroleplay,disguiserequestsorcreatemulti-stepinstructionsthatgraduallyweakenthemodel’sguardrailsuntilitproducesrestrictedorinappropriatecontent

Jailbreaksexposefirmstothegenerationof

harmful,misleadingornon-compliantoutputs,

whichcancreateregulatory,ethicaland

reputationalrisks.Theycanalsoenableattackerstomapweaknessesinamodel’scontrolframework

Adversarial

promptsorexamples

Inputsthathavebeensubtlyandintentionallyalteredinawaythatmisleadsthemodel,

eventhoughthechangesmaybeimperceptibletohumans

Attackersadjustwords,phrasing,imagesordatapatternssothemodelinterpretsthemincorrectly.Thesemanipulationsexploithowmodelsprocessandweightdifferentfeatures

Thiscancausemodelstomisclassifyormisinterpretinformation,resultinginunreliabledecisions,

manipulationofautomatedworkflowsorincorrectoutputsinhigh-stakesenvironmentssuchasfrauddetectionorcontentmoderation

PhilippinesSingaporeSouthKoreaTaiwan(China)ThailandVietnamContactsEndnotes

05

Introduction●

Overview

Recommendations●

JurisdictionalDeepDive

Australia●

China(Mainland)●HongKongSAR●

India●

Indonesia●

Japan

Malaysia

AICybersecurity

AttacksonDataand

TrainingPipelines

WhatItIs

AttackVectorHowAttackersExploitItWhyItMatters

●Modelinversion

Poisoningweakensmode|performance,embedsbackdoors,createssystematicinaccuraciesanderodestrustinthesystem.Poisoningattackscanbedifficulttodetect,anddamagecanpersist

acrossiterationsofthemode|

Thiscanexposesensitiveorregulateddata,

vio|ateprivacyob|igationsanda||owattackerstobuilddetailedprofilesofindividualsordatasets.Regulatorsincreasinglyviewthisasasignificantcomplianceandconfidentialityrisk

Thisunderminesintellectualproperty,reducescompetitiveadvantageandenab|esma|iciousactorstodep|oythesto|enmode|forharmfu|purposes,inc|uding|arge-sca|eattacksor

disinformation

Thedeliberateintroductionofcorrupted,biasedormisleadingdataintotrainingorfine-tuning

pipe|ines.Poisoneddatamay|ook|egitimatebutisengineeredtodistortmode|behaviour

Amethodofreconstructingsensitiveinformationaboutthetrainingdatabyana|ysingpatternsinthemode|,soutputs.Overtime,attackerscan

inferdetai|sabouttheorigina|dataset

Aprocesswhereanattackerrep|icatesamode|,sfunctiona|ity,|ogicorparametersbyqueryingitrepeatedly,effectivelycloningthemodelwithoutdirectaccesstoitscodeortrainingdata

Attackersissuerepeated,carefu||ystructuredqueriesandana|ysereturnedpatternstoinferpersonalattributes,confidentialinformationorproprietarytrainingdata

Attackerssystematica||yprobethemode|,sinputsandoutputs,oftenusingautomatedtoo|s,unti|theycanreproduceitsdecisionboundariesor

Attackersinsertmanipu|atedsamp|esintodata

sourcesthemode|re|ieson,suchasopen

datasets,web-scrapedmateria|orinterna|updatepipe|ines.lnsomecases,attackersaddItrigger,

patternsthatcausethemode|tobehavedifferentlyonlyinspecificscenarios

Modelextractionortheft

generateanequiva|entmode|

Datapoisoning

NewZealand

Philippines

Singapore

SouthKorea

Taiwan(China)

Thailand

Vietnam

Contacts

Endnotes

06

Introduction

AICybersecurity

Overview

ChainandInfrastructure

Supply

Attackson

WhatItIs

Recommendations

JurisdictionalDeepDive

AttackVectorHowAttackersExploitItWhyItMatters

Australia

China(Mainland)

HongKongSAR

India

Indonesia

Japan

Malaysia

NewZealand

Asinglecompromisedcomponentcanaffecteverysystemthatusesit,creatingwidespreadand

hard-to-tracevulnerabilities.Manyorganisationsrelyheavilyonsharedcodeandmodels,thereforeanattackononecomponentcanescalateintoabroadersystemicissueacrosssectorsorregions

Thiscanresultincorruptedmodels,unauthorisedmodelupdates,silenttamperingordisruptionofproductionsystems.Becausepipelinesautomatedeployment,asinglecompromisecanspread

widelyandrapidly

Evenifanorganisation’sownsystemsaresecure,weaknessesinanexternalpartnercancreateapathwayforattackers.Thiscanresultindata

exposure,incorrectmodeloutputsordisruptiontobusinessprocessesthatdependonthose

externalservices

Attackerscompromisepopularopen-source

packagesorpre-trainedmodelssothatany

organisationthatinstallsthemunknowinglyimportstheattacker’scodeormanipulatedmodelweights.Thisallowstheattackertospreadmalwareor

updatedorstored,suchasversion-controlsystemsordeploymentscripts,andinsertchangeswithoutdetection.Thiscanallowthemtomodifyhowa

servicesthattheAIreliesonfordata,processingorfunctionality.TheseareoftenexternaltoolsthatsupplyinputsintotheAIsystem

Compromised

AIdevelopmentpipeline

Third-partyexploitation

Weaknessesorhiddenrisksinopen-source

software,sharedlibrariesorpre-builtAImodelsthatanorganisationdownloadsorintegratesintoitssystems.Thesecomponentsmaycontain

Attacksonthetoolsandsystemsusedtobuild,testanddeployAImodels.Thisincludescoderepositories,modelstoragelocationsand

modelbehaves,disablekeysecuritychecksoraddhiddenfunctions

Insomecases,theyinterceptinformationorfeedincorrectdataintothesystemtoalteroutputs

interfaceswiththird-partyservicesormanipulatethedatabeingsentthroughtheseconnections.

codingflawsormayhavebeentamperedwithbeforedistribution

influenceAIbehaviouracrossmanyorganisationsatonce

Compromised

componentsorexternalmodels

Attackerstargettheplaceswheremodelsare

Attackerstakeadvantageofpoorlyprotected

Weaknessesinothercompanies’systemsor

automateddeploymenttools

Philippines

TheseattackvectorsillustratetheAIcyberthreatenvironment,andunderscoretheimportanceofrobustsecuritycontrolsthroughouttheAImodellifecycle.

Singapore

SouthKorea

Taiwan(China)

Thailand

Vietnam

Contacts

Endnotes

07

Introduction

AICybersecurity

Overview

Recommendations

JurisdictionalDeepDive

SupplyChainandThird-PartyRisks

Ashighlightedabove,third-partyrelationshipsandextendedsupplychainsareamajorsourceofcyberandAI-relatedvulnerability,particularlyforfirmsincomplexvendorecosystems.ManyincidentsnowstemfromvendorsandtheAIcapabilitiesembeddedinthesoftwareandservicestheyprovide.Asfirmsconnectmoretoolsanddatapipelines,theycanalsobesusceptibletoweaknessesacrossthisextendedecosystem.Inpractice,acompany’sattacksurfacethereforeexpandstoincludehowitsvendorsdesign,deploy,andupdateAI.

Companiesthatutilisethird-partyinfrastructureshouldbeawarethatvendorpracticesvarysignificantly.SomeprovidershavematuregovernanceandmonitoringprocessesfortheirAImodels;othersarestilldevelopingbasicpoliciesandcontrols.Visibilityintohowvendorsusedata,trainandupdatemodels,andrespondtoissuesisthereforeessentialforunderstandingresidualrisk.

ContractsandoperatingtermsneedtoreflecthowAIfeatureswillevolve,howchangeswillbeannounced,andhowincidentswillbereported.Ongoingdialoguewithkeyvendorsespeciallyaroundnewfeatures,modelchanges,andsystemupdatesiscrucialtoensuresystemsremainsecureandsensitivedataisprotected.

AustraliaChina(Mainland)HongKongSARIndia

Indonesia

Japan

Malaysia

NewZealand

Philippines

Singapore

SouthKorea

Taiwan(China)

Thailand

Vietnam

Contacts

Endnotes

08

Introduction

AICybersecurity

Overview

AISecurityTrade-offs

ImplementingcybersecuritymeasuresforAIsystemsrequiresacarefulbalancebetweentheperformanceandsecurityofAIsystems.OrganisationsmustprotectAIassetsagainstincreasinglysophisticatedcyberthreats,whilerecognisingthatgreatersecurityconstraintscandirectlyreducetheaccuracy,adaptability,andoverallutilityofAImodels.AsAIbecomesembeddedincriticalbusinessoperationsanddecision-making,theneedforstrongcybersecuritycontrolisintensifying.Inordertosafeguardagainstkeyriskssuchasdatapoisoning,modeltheftandunauthorisedaccess,firmstypicallydeployarangeofcontrols.Thesesecuritymeasuresincludeencryption,accessmanagement,continuousmonitoringandrigorousauditingofmodelsandtrainingdata.

Akeyconsiderationisthedistinctionbetweenproductivitytools(e.g.,enterprisechatbots,researchtools)andAImodelsthatdrivebusinessdecisions(e.g.,decision-supportalgorithms,model-basedriskengines).Productivitytoolstypicallyoperateonlower-riskdataandcanthereforebedeployedwithlightersecuritycontrolswithoutsignificantlyincreasingexposure.Incontrast,decision-criticalandcustomerfacingAImodelsusuallyrequiremorestringentprotectionsduetothesensitivityoftheunderlyingdataandthepotentialimpactofmodelcompromise.

Applyingauniform,high-securitypostureacrossallAItoolscanunnecessarilydegradeperformanceandreducebusinessvalue,particularlyforlow-risk,high-volumeproductivityapplicationswhereusabilityandspeedareessential.Thechallenge,therefore,liesincalibratingsecurityframeworkstotheriskprofileanduniquecharacteristicsofeachAIusecase.Doingsoallowsfirmstoprotectcriticalassetswithoutconstrainingmodelperformanceorimpedingbusinessproductivity.

Recommendations●

JurisdictionalDeepDive

Australia

China(Mainland)

HongKongSAR

India

Indonesia

Japan

Malaysia

NewZealand

However,manyoftheseprotectionscomewithperformancetrade-offsandcanberesourceintensive.Restrictiveaccesstodata,forexample,canmateriallylimitanAIsystem’sabilitytolearnfromdiverseandrepresentativedatasets,reducingtherobustnessandaccuracyofitsoutputs.Likewise,frequentauthenticationchecksorhighlysegmentedenvironmentscanintroducelatency,disruptreal-timeprocessing,andfrustrateend-userswhoexpectseamlessinteractions.Overlyconservativepoliciescanalsostifleinnovationbypreventingteamsfromexperimentingwithnewusecasesoriteratingmodelsatpace.

Philippines

Singapore

SouthKorea

Taiwan(China)

Thailand

Vietnam

Contacts

Endnotes

09

Introduction

AICybersecurity

Overview

Recommendations

JurisdictionalDeepDive

AustraliaChina(Mainland)HongKongSARIndia

IndonesiaJapanMalaysiaNewZealand

AI-enabledCybersecurityCapabilities

Ascyberthreatsbecomemorefrequentandcomplex,organisationsareincreasinglyturningtoAItostrengthentheirdefences.Whenusedappropriately,AIcanautomateroutinetasks,detectsuspiciousactivityearlier,andsupportfastermoreaccurateincidentresponse.Thesecapabilitiesenhanceboththeefficiencyandeffectivenessofexistingcybersecuritycontrolswhilehelpingfirmsscaletheirdefencesacrossacomplexdigitalenvironment.

ThreatDetectionandResponse

AIanalysesnetwork,endpoint,anduseractivitytoidentifyanomaliesandsuspiciouspatternsthatmayindicateanemergingthreat.Itprioritisesalertsandproposeslikelycauses,enablingfasterandmoretargetedresponses

SecurePipelineand

DeploymentAutomation

AIpredictsbuildissuesandidentifiesconfigurationweaknessesbeforedeployment.Thishelpsensurethatonlysecurelyconfiguredcodeprogressesthroughthepipeline,reducingtheriskofintroducingvulnerabilities

IncidentResponseandMonitoring

AIcorrelatesandsummariseslargevolumesoflogsandtelemetrytoidentifyrootcausesmorequickly.Itautomatespartsoftriageandsupportsmoreconsistentremediationacrossteams

AIisbecominganincreasinglyimportantenablerofmoderncyber-defence.Whilethesetoolsdonotreplaceestablishedcontrolsorhumanjudgement,theysupportmorescalableandefficientsecurityoperations.AsfirmsadoptAI-enabledcapabilities,successwilldependonembeddingthemwithinexistinggovernance,risk,andassuranceframeworkstoensuretheyenhanceratherthancomplicateafirm’scyberdefencestrategy.

AIEnabledSolution

HowdoesthisStrengthensCybersecurity

AIreviewscodeforunsafepatternsandknownvulnerabilitiesasitiswritten,reducingthelikelihoodofsecuritydefectsenteringproductionandloweringremediationeffort

SecureCodeDevelopment

Policy,Control,and

ComplianceAssurance

AIcontinuouslycheckssystemsagainstinternalsecuritypoliciesandregulatorybaselines,flaggingdeviationsinrealtime.Thisreducestheriskofmisconfigurations,weakcontrols,andauditfindings

SoftwareSupply-ChainSecurity

AIscansthird-partycomponentsandopen-sourcelibrariestodetectvulnerabilities,tampering,orunexpectedchanges.Ithelpsfirmsmanagedependencyrisksacrossincreasinglycomplexsoftwareecosystems

SecurityTestingand

VulnerabilityManagement

AIidentifiessecurity-relevantcodeweaknesses,prioritisesvulnerabilityremediationbasedonrisk,andrecommendswhereadditionaltestingisneeded.Thisenhancestherobustnessofpreventivecontrols

Developerand

AnalystSupport

AIactsasanassistantthatexplainssecurityissuesinplainlanguage,recommendsremediationsteps,andreducesmanualeffortacrosssecure-codingandsecurity-operationsworkflows

Architectureand

Attack-SurfaceManagement

AIevaluatessystemdesignanddependenciestohighlightcomponentsthatincreaseattacksurfaceorintroducesecurityfragility.Itsupportslong-termplanningforhardeningandmodernisation

PhilippinesSingaporeSouthKoreaTaiwan(China)ThailandVietnam

Contacts●

Endnotes

10

Introduction

AICybersecurity

Overview

Recommendations

Deepfakesaresyntheticimages,videosoraudiorecordingsgeneratedbyAItoimitaterealpeoplewithahighdegreeofrealism.Theycanmakeitappearasthoughanindividualhassaidordonesomethingtheyneverdid,creatingriskstoinformationsecurity,reputationmanagement,andtrustindigitalcommunications.

Althoughdeepfaketechniquesareimprovingrapidly,thisisoneareawhereeffectivemitigationisalreadyachievable.Risksassociatedwithdeepfakescanbesuccessfullymitigatedbyorganisationswhichadoptrobustcybersecuritycontrolsthatbothdetectandlimitthespreadofmanipulatedcontent.Advancedmachinelearning-baseddetectiontoolscananalyseaudio-visualcuesandmetadatatoidentifyforgedmedia,whiledigitalwatermarkingandprovenance-trackingtechnologieshelpverifytheauthenticityoffiles.Thesecapabilitiescontinuetomatureandareincreasinglybeingintegratedintomainstreamcybersecurityandcontent-verificationtools.However,regularlyupdatingthesedetectionmechanismsisessential,asdeepfaketechniquescontinuetoevolve.

Inadditiontotechnicalsolutions,implementingstrictaccesscontrolsandmulti-factorauthenticationcanreducethelikelihoodofattackersobtainingoriginalcontenttocreateconvincingdeepfakes.Securityawarenesstrainingalsoplaysavitalrole;educatingemployeesandstakeholdersaboutthepotentialsignsanddangersofdeepfakesfostersacultureofvigilance.Bycombiningsophisticateddetectionsystems,accessmanagement,andongoingawarenessinitiatives,organisationscansignificantlymitigatethecybersecurityrisksposedbydeepfakes.

JurisdictionalDeepDive

AustraliaChina(Mainland)HongKongSARIndia

IndonesiaJapanMalaysiaNewZealand

PhilippinesSingaporeSouthKoreaTaiwan(China)ThailandVietnamContactsEndnotes

11

Deepfakes

Introduction

AICybersecurity

Overview

Recommendations

OverviewoftheRegulatoryLandscape

JurisdictionalDeepDive

Australia

nollnaurusgircissAP,drivenbythegrowingfrequencyandseverityofcyberincidentsandthe

China(Mainland)

Thisregulatorypatchworkcreatessignificantchallengesformultinationalfirmsthatmustensuretheircyberriskmanagementframeworksareadaptabletodifferinglocalrequirements.Inaddition,regulatoryexpectationsarerapidlyevolvinginstepwithtechnologicalchange,meaningfirmsmustremainagileandvigilanttomaintaincomplianceandavoidpenaltiesoroperationaldisruptions.

WhilemostjurisdictionsstillrelyongeneralcybersecurityframeworkstosafeguardAIsystems,regulatorsarebeginningtointroduceAI-specificsecurityexpectations.Forexample,somejurisdictionshaveintroducedrulesandguidelinesaimedatmodelrobustness,adversarialtesting,securedatahandling,andprotectionsagainstmodelmanipulation.

HongKongSAR

India

Indonesia

Authoritiesarerespondingbystrengtheningcyber-specificframeworksandembeddingcybersecurityexpectationsaspartofbroaderoperationalresilienceorAIgovernancerequirements.Nevertheless,theregulatorylandscapeacrossAPremainshighlyfragmented,witheachjurisdictioncraftingitsownrules,definitions,andenforcementpriorities.

Japan

Malaysia

NewZealand

JurisdictionssuchasAustralia,Singapore,Japan,China(Mainland)(“China”),SouthKorea,andIndiahaveenactedcomprehensivelawstoaddresscyberrisks.However,therearesignificantdifferencesinthescope,terminology,andenforcementmechanisms.Forexample,whileSingapore’sCybersecurityActfocusesontheprotectionof“criticalinformationinfrastructure”andprescribessector-specificobligations,China’sCybersecurityLawencompassesabroaderrangeofsectors,andmandateslocalisationofcriticaldata.Meanwhile,Japan’sCybersecurityBasicActtakesamorestrategic,coord

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论