版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
centrefor
RegulatorystrategyAsiapacific
SafeguardingCybersecurityinAI:
BuildingResilienceinaNewRiskLandscape
December2025
Australia
China(Mainland)
NavigatingtheReport
OverviewoftheRegulatoryLandscape
Recommendations
Clickicontonavigatetotherelevantsection
Introduction
AI
Cybersecurity
DeepDive
Philippines
Thailand
Indonesia
Jurisdictional
Singapore
Vietnam
Japan
Malaysia
SouthKorea
HongKongSAR
India
NewZealand
Taiwan(China)
Contacts
Endnotes
Introduction
Introduction
AICybersecurity
Overview
Recommendations
JurisdictionalDeepDive
However,despitethepotentialrisks,AIalsoprovidesopportunitiestostrengthencybersecurity.AI-enabledtoolscanhelporganisationsdetectissues,improvethesecurityofsoftwareandsystems,andrespondtoincidentsmorequicklyandconsistently.Firmsthatcombinethesecapabilitieswithstronggovernanceandproportionatecontrolswillbebetterpositionedtomanagetheevolvingcyberthreatlandscape.
CybersecurityisnowfirmlyaBoardlevelresponsibility.TheadditionalrisksintroducedbyAImakestrongoversight,clearlinesofaccountability,andBoardfluencyinAItechnologyessential.Thesecapabilitiesareneedednotonlytoprotectcriticaloperationsandmeetregulatoryobligations,butalsotomaintaincustomerandstakeholdertrust.
ThispaperexamineshowAIisimpactingcybersecurityrisk,howsupervisorsinAParerespondingandwhatorganisationscandotobuildstrongerandmoreresilientdefences.Itoutlineskeyattackvectors,emergingregulatoryexpectations,andpracticalstepsforBoardsandseniorexecutivestobolstertheirfirm’scyberresilience.
WhilstthispaperfocusesonAIsecurityconsiderations,itisimportantforfirmstotakeaholisticviewandaddressallAI-relatedriskswhendevelopingtheirtechnologystrategyandAIsystems.
Artificialintelligence(AI)isreshapingthecybersecuritylandscapeacrossAsiaPacific(AP).
Australia
China(Mainland)
HongKongSAR
EvenbeforetheriseofadvancedAI,theincreasingdigitisationofbusinessoperationshadalreadymadecyber-attacksmorefrequent,scalableandeffective.AIisnowamplifyingthistrendbyenablingmaliciousactorstoworkmorequicklyandproducemoreconvincingandadaptiveattacks.Forexample,AIcanhelpgeneratepersuasivephishingmessagesanddeepfakes,analysesystemstoidentifyweaknesses,andadjustattackmethodsinreal-time.Thislowersthebarrierforattackersandincreasesboththespeedandpotentialimpactofacyberincident.
India
Indonesia
Japan
Malaysia
AsorganisationsadoptAIacrosscoreprocesses,theattacksurfaceisalsoexpanding.AIintroducesnewsystemsanddataflowsintotechnologyarchitecture,includingmodeltrainingenvironments,automateddecisionworkflowsandlarge-scaledatapipelines.Thesecomponentscanpotentiallycreateadditionalpointswherevulnerabilitiesmayarise.Further,theAIsystemsarealsosubjecttoattack.Adversariesmaytrytocorruptthedatausedtotrainmodels,influenceordistortmodeloutputs,orexploitweaknessesinhowthesystemsinterpretandrespondtouserinputs.
NewZealand
Philippines
Singapore
Thesethreatscreateclearbusinessrisks.AI-relatedcyberincidentscancausefinanciallosses,compromiseintellectualproperty,distortcriticaldecisionoutputs,exposesensitivecustomerdata,anderodeorganisationalreputationandstakeholdertrust.Therefore,asAIadoptiongrows,itiscriticalthatrisksmustbeassessedandmanagedaspartofawidercyberdefencestrategy.
SouthKorea
Taiwan(China)
Thailand
Vietnam
Contacts
Endnotes
03
AISecurityvs.AISafety
Forthepurposesofthisreport,wedefineAIsecurityastheprotectionsthatkeepAIsystemsresilientagainstattacksandmisuse.Thisincludesdefendingagainstadversarialinputs,tampereddata,stolenmodels,andattemptstomanipulateorextractmodeloutputs.
WedistinguishthisfromAIsafety,whichconcernshowanAIsystembehavessuchasitsaccuracy,reliability,fairness,andalignmentwithintendedgoals.
Inpractice,thesetwodomainsoftenoverlap.Weaksafety,suchasamodelthatisbrittle,poorlycalibrated,orpronetohallucinationcancreateopeningsthatattackerscanexploit.Conversely,asecurityfailurelikecompromisedtrainingdataormanipulatedcontentcandegradesafetybychangingasystem’sbehavioranderodingtrustinitsoutputs.
ThispaperfocusesonthecybersecurityrisksassociatedwithAIsystemswhilerecognisingtheseriskscanaffectbroadersafetyoutcomesandvice-versa.
NewZealand
Philippines
Singapore
SouthKorea
Taiwan(China)
Thailand
Vietnam
Contacts
Endnotes
04
Australia
India
Indonesia
Malaysia
Overview
Recommendations
JurisdictionalDeepDive
Japan
China(Mainland)HongKongSAR
Introduction
AICybersecurity
Introduction
AICybersecurity
Overview
Recommendations
JurisdictionalDeepDive
AustraliaChina(Mainland)HongKongSARIndia
IndonesiaJapanMalaysiaNewZealand
AICybersecurity
AICybersecurityRisks
AsorganisationsbegintoadoptandscaleAI,maliciousactorsareevolvingtotargetthesesystems.Sometechniquessuchaspromptinjections,jailbreaksandmodelextractionarerelativelynewandarisefromthewayAImodelsprocessdataandinstructions.Others,includingsupplychaincompromiseortheexploitationofvulnerablecomponents,buildonlongstandingcyber-attackmethods.Nevertheless,theimpactsareamplifiedbyAI’srelianceonexternalmodels,opensourcetoolsandcomplexdatapipelines.Theresultisabroaderandmoredynamicattacksurfacethatcanimpacttheintegrity,confidentialityandreliabilityofAIsystemsandtheprocessestheyunderpin.UnderstandingtheserisksisanimportantfirststepindevelopingthesecuritycontrolsandmonitoringmechanismsneededtokeepAIsystemssafe.
ThetablebelowsummarisessomeofthekeysecurityrisksimpactingAIsystems.
AttacksonModelBehaviour
AttackVector
WhatItIs
HowAttackersExploitIt
WhyItMatters
Promptinjections
MaliciousorcarefullycraftedinstructionsinsertedintopromptsorcontextualdatathatanAImodelreliesontogenerateoutputs.Theseinstructionsareoftenhiddenwithinuserinputs,documents,websitesordatasets
Attackerstrickthemodelintofollowingunintendedinstructionsbyembeddingcommandsinusertext,metadataorexternalcontentpulledintothe
modelIscontext.Thiscanoverrideintendedlogicandcausethemodeltobehaveunpredictably
Promptinjectionscancausethemodeltodisclosesensitiveinformation,performunintendedactions,generateharmfulorunauthorisedoutputsor
underminedownstreamautomatedprocessesthatrelyonmodel-generatedcontent
Jailbreaks
TechniquesthatdeliberatelybypassguardrailsandrestrictionsbuiltintoAIsystems,allowingthemtooutputcontentthatwouldnormallybeblocked
Attackerschainprompts,useroleplay,disguiserequestsorcreatemulti-stepinstructionsthatgraduallyweakenthemodel’sguardrailsuntilitproducesrestrictedorinappropriatecontent
Jailbreaksexposefirmstothegenerationof
harmful,misleadingornon-compliantoutputs,
whichcancreateregulatory,ethicaland
reputationalrisks.Theycanalsoenableattackerstomapweaknessesinamodel’scontrolframework
Adversarial
promptsorexamples
Inputsthathavebeensubtlyandintentionallyalteredinawaythatmisleadsthemodel,
eventhoughthechangesmaybeimperceptibletohumans
Attackersadjustwords,phrasing,imagesordatapatternssothemodelinterpretsthemincorrectly.Thesemanipulationsexploithowmodelsprocessandweightdifferentfeatures
Thiscancausemodelstomisclassifyormisinterpretinformation,resultinginunreliabledecisions,
manipulationofautomatedworkflowsorincorrectoutputsinhigh-stakesenvironmentssuchasfrauddetectionorcontentmoderation
PhilippinesSingaporeSouthKoreaTaiwan(China)ThailandVietnamContactsEndnotes
05
Introduction●
Overview
Recommendations●
JurisdictionalDeepDive
Australia●
China(Mainland)●HongKongSAR●
India●
Indonesia●
Japan
Malaysia
AICybersecurity
AttacksonDataand
TrainingPipelines
WhatItIs
AttackVectorHowAttackersExploitItWhyItMatters
●Modelinversion
Poisoningweakensmode|performance,embedsbackdoors,createssystematicinaccuraciesanderodestrustinthesystem.Poisoningattackscanbedifficulttodetect,anddamagecanpersist
acrossiterationsofthemode|
Thiscanexposesensitiveorregulateddata,
vio|ateprivacyob|igationsanda||owattackerstobuilddetailedprofilesofindividualsordatasets.Regulatorsincreasinglyviewthisasasignificantcomplianceandconfidentialityrisk
Thisunderminesintellectualproperty,reducescompetitiveadvantageandenab|esma|iciousactorstodep|oythesto|enmode|forharmfu|purposes,inc|uding|arge-sca|eattacksor
disinformation
Thedeliberateintroductionofcorrupted,biasedormisleadingdataintotrainingorfine-tuning
pipe|ines.Poisoneddatamay|ook|egitimatebutisengineeredtodistortmode|behaviour
Amethodofreconstructingsensitiveinformationaboutthetrainingdatabyana|ysingpatternsinthemode|,soutputs.Overtime,attackerscan
inferdetai|sabouttheorigina|dataset
Aprocesswhereanattackerrep|icatesamode|,sfunctiona|ity,|ogicorparametersbyqueryingitrepeatedly,effectivelycloningthemodelwithoutdirectaccesstoitscodeortrainingdata
Attackersissuerepeated,carefu||ystructuredqueriesandana|ysereturnedpatternstoinferpersonalattributes,confidentialinformationorproprietarytrainingdata
Attackerssystematica||yprobethemode|,sinputsandoutputs,oftenusingautomatedtoo|s,unti|theycanreproduceitsdecisionboundariesor
Attackersinsertmanipu|atedsamp|esintodata
sourcesthemode|re|ieson,suchasopen
datasets,web-scrapedmateria|orinterna|updatepipe|ines.lnsomecases,attackersaddItrigger,
patternsthatcausethemode|tobehavedifferentlyonlyinspecificscenarios
Modelextractionortheft
generateanequiva|entmode|
Datapoisoning
NewZealand
Philippines
Singapore
SouthKorea
Taiwan(China)
Thailand
Vietnam
Contacts
Endnotes
06
Introduction
AICybersecurity
Overview
ChainandInfrastructure
Supply
Attackson
WhatItIs
Recommendations
JurisdictionalDeepDive
AttackVectorHowAttackersExploitItWhyItMatters
Australia
China(Mainland)
HongKongSAR
India
Indonesia
Japan
Malaysia
NewZealand
Asinglecompromisedcomponentcanaffecteverysystemthatusesit,creatingwidespreadand
hard-to-tracevulnerabilities.Manyorganisationsrelyheavilyonsharedcodeandmodels,thereforeanattackononecomponentcanescalateintoabroadersystemicissueacrosssectorsorregions
Thiscanresultincorruptedmodels,unauthorisedmodelupdates,silenttamperingordisruptionofproductionsystems.Becausepipelinesautomatedeployment,asinglecompromisecanspread
widelyandrapidly
Evenifanorganisation’sownsystemsaresecure,weaknessesinanexternalpartnercancreateapathwayforattackers.Thiscanresultindata
exposure,incorrectmodeloutputsordisruptiontobusinessprocessesthatdependonthose
externalservices
Attackerscompromisepopularopen-source
packagesorpre-trainedmodelssothatany
organisationthatinstallsthemunknowinglyimportstheattacker’scodeormanipulatedmodelweights.Thisallowstheattackertospreadmalwareor
updatedorstored,suchasversion-controlsystemsordeploymentscripts,andinsertchangeswithoutdetection.Thiscanallowthemtomodifyhowa
servicesthattheAIreliesonfordata,processingorfunctionality.TheseareoftenexternaltoolsthatsupplyinputsintotheAIsystem
Compromised
AIdevelopmentpipeline
Third-partyexploitation
Weaknessesorhiddenrisksinopen-source
software,sharedlibrariesorpre-builtAImodelsthatanorganisationdownloadsorintegratesintoitssystems.Thesecomponentsmaycontain
Attacksonthetoolsandsystemsusedtobuild,testanddeployAImodels.Thisincludescoderepositories,modelstoragelocationsand
modelbehaves,disablekeysecuritychecksoraddhiddenfunctions
Insomecases,theyinterceptinformationorfeedincorrectdataintothesystemtoalteroutputs
interfaceswiththird-partyservicesormanipulatethedatabeingsentthroughtheseconnections.
codingflawsormayhavebeentamperedwithbeforedistribution
influenceAIbehaviouracrossmanyorganisationsatonce
Compromised
componentsorexternalmodels
Attackerstargettheplaceswheremodelsare
Attackerstakeadvantageofpoorlyprotected
Weaknessesinothercompanies’systemsor
automateddeploymenttools
Philippines
TheseattackvectorsillustratetheAIcyberthreatenvironment,andunderscoretheimportanceofrobustsecuritycontrolsthroughouttheAImodellifecycle.
Singapore
SouthKorea
Taiwan(China)
Thailand
Vietnam
Contacts
Endnotes
07
Introduction
AICybersecurity
Overview
Recommendations
JurisdictionalDeepDive
SupplyChainandThird-PartyRisks
Ashighlightedabove,third-partyrelationshipsandextendedsupplychainsareamajorsourceofcyberandAI-relatedvulnerability,particularlyforfirmsincomplexvendorecosystems.ManyincidentsnowstemfromvendorsandtheAIcapabilitiesembeddedinthesoftwareandservicestheyprovide.Asfirmsconnectmoretoolsanddatapipelines,theycanalsobesusceptibletoweaknessesacrossthisextendedecosystem.Inpractice,acompany’sattacksurfacethereforeexpandstoincludehowitsvendorsdesign,deploy,andupdateAI.
Companiesthatutilisethird-partyinfrastructureshouldbeawarethatvendorpracticesvarysignificantly.SomeprovidershavematuregovernanceandmonitoringprocessesfortheirAImodels;othersarestilldevelopingbasicpoliciesandcontrols.Visibilityintohowvendorsusedata,trainandupdatemodels,andrespondtoissuesisthereforeessentialforunderstandingresidualrisk.
ContractsandoperatingtermsneedtoreflecthowAIfeatureswillevolve,howchangeswillbeannounced,andhowincidentswillbereported.Ongoingdialoguewithkeyvendorsespeciallyaroundnewfeatures,modelchanges,andsystemupdatesiscrucialtoensuresystemsremainsecureandsensitivedataisprotected.
AustraliaChina(Mainland)HongKongSARIndia
Indonesia
Japan
Malaysia
NewZealand
Philippines
Singapore
SouthKorea
Taiwan(China)
Thailand
Vietnam
Contacts
Endnotes
08
Introduction
AICybersecurity
Overview
AISecurityTrade-offs
ImplementingcybersecuritymeasuresforAIsystemsrequiresacarefulbalancebetweentheperformanceandsecurityofAIsystems.OrganisationsmustprotectAIassetsagainstincreasinglysophisticatedcyberthreats,whilerecognisingthatgreatersecurityconstraintscandirectlyreducetheaccuracy,adaptability,andoverallutilityofAImodels.AsAIbecomesembeddedincriticalbusinessoperationsanddecision-making,theneedforstrongcybersecuritycontrolisintensifying.Inordertosafeguardagainstkeyriskssuchasdatapoisoning,modeltheftandunauthorisedaccess,firmstypicallydeployarangeofcontrols.Thesesecuritymeasuresincludeencryption,accessmanagement,continuousmonitoringandrigorousauditingofmodelsandtrainingdata.
Akeyconsiderationisthedistinctionbetweenproductivitytools(e.g.,enterprisechatbots,researchtools)andAImodelsthatdrivebusinessdecisions(e.g.,decision-supportalgorithms,model-basedriskengines).Productivitytoolstypicallyoperateonlower-riskdataandcanthereforebedeployedwithlightersecuritycontrolswithoutsignificantlyincreasingexposure.Incontrast,decision-criticalandcustomerfacingAImodelsusuallyrequiremorestringentprotectionsduetothesensitivityoftheunderlyingdataandthepotentialimpactofmodelcompromise.
Applyingauniform,high-securitypostureacrossallAItoolscanunnecessarilydegradeperformanceandreducebusinessvalue,particularlyforlow-risk,high-volumeproductivityapplicationswhereusabilityandspeedareessential.Thechallenge,therefore,liesincalibratingsecurityframeworkstotheriskprofileanduniquecharacteristicsofeachAIusecase.Doingsoallowsfirmstoprotectcriticalassetswithoutconstrainingmodelperformanceorimpedingbusinessproductivity.
Recommendations●
JurisdictionalDeepDive
Australia
China(Mainland)
HongKongSAR
India
Indonesia
Japan
Malaysia
NewZealand
However,manyoftheseprotectionscomewithperformancetrade-offsandcanberesourceintensive.Restrictiveaccesstodata,forexample,canmateriallylimitanAIsystem’sabilitytolearnfromdiverseandrepresentativedatasets,reducingtherobustnessandaccuracyofitsoutputs.Likewise,frequentauthenticationchecksorhighlysegmentedenvironmentscanintroducelatency,disruptreal-timeprocessing,andfrustrateend-userswhoexpectseamlessinteractions.Overlyconservativepoliciescanalsostifleinnovationbypreventingteamsfromexperimentingwithnewusecasesoriteratingmodelsatpace.
Philippines
Singapore
SouthKorea
Taiwan(China)
Thailand
Vietnam
Contacts
Endnotes
09
Introduction
AICybersecurity
Overview
Recommendations
JurisdictionalDeepDive
AustraliaChina(Mainland)HongKongSARIndia
IndonesiaJapanMalaysiaNewZealand
AI-enabledCybersecurityCapabilities
Ascyberthreatsbecomemorefrequentandcomplex,organisationsareincreasinglyturningtoAItostrengthentheirdefences.Whenusedappropriately,AIcanautomateroutinetasks,detectsuspiciousactivityearlier,andsupportfastermoreaccurateincidentresponse.Thesecapabilitiesenhanceboththeefficiencyandeffectivenessofexistingcybersecuritycontrolswhilehelpingfirmsscaletheirdefencesacrossacomplexdigitalenvironment.
ThreatDetectionandResponse
AIanalysesnetwork,endpoint,anduseractivitytoidentifyanomaliesandsuspiciouspatternsthatmayindicateanemergingthreat.Itprioritisesalertsandproposeslikelycauses,enablingfasterandmoretargetedresponses
SecurePipelineand
DeploymentAutomation
AIpredictsbuildissuesandidentifiesconfigurationweaknessesbeforedeployment.Thishelpsensurethatonlysecurelyconfiguredcodeprogressesthroughthepipeline,reducingtheriskofintroducingvulnerabilities
IncidentResponseandMonitoring
AIcorrelatesandsummariseslargevolumesoflogsandtelemetrytoidentifyrootcausesmorequickly.Itautomatespartsoftriageandsupportsmoreconsistentremediationacrossteams
AIisbecominganincreasinglyimportantenablerofmoderncyber-defence.Whilethesetoolsdonotreplaceestablishedcontrolsorhumanjudgement,theysupportmorescalableandefficientsecurityoperations.AsfirmsadoptAI-enabledcapabilities,successwilldependonembeddingthemwithinexistinggovernance,risk,andassuranceframeworkstoensuretheyenhanceratherthancomplicateafirm’scyberdefencestrategy.
AIEnabledSolution
HowdoesthisStrengthensCybersecurity
AIreviewscodeforunsafepatternsandknownvulnerabilitiesasitiswritten,reducingthelikelihoodofsecuritydefectsenteringproductionandloweringremediationeffort
SecureCodeDevelopment
Policy,Control,and
ComplianceAssurance
AIcontinuouslycheckssystemsagainstinternalsecuritypoliciesandregulatorybaselines,flaggingdeviationsinrealtime.Thisreducestheriskofmisconfigurations,weakcontrols,andauditfindings
SoftwareSupply-ChainSecurity
AIscansthird-partycomponentsandopen-sourcelibrariestodetectvulnerabilities,tampering,orunexpectedchanges.Ithelpsfirmsmanagedependencyrisksacrossincreasinglycomplexsoftwareecosystems
SecurityTestingand
VulnerabilityManagement
AIidentifiessecurity-relevantcodeweaknesses,prioritisesvulnerabilityremediationbasedonrisk,andrecommendswhereadditionaltestingisneeded.Thisenhancestherobustnessofpreventivecontrols
Developerand
AnalystSupport
AIactsasanassistantthatexplainssecurityissuesinplainlanguage,recommendsremediationsteps,andreducesmanualeffortacrosssecure-codingandsecurity-operationsworkflows
Architectureand
Attack-SurfaceManagement
AIevaluatessystemdesignanddependenciestohighlightcomponentsthatincreaseattacksurfaceorintroducesecurityfragility.Itsupportslong-termplanningforhardeningandmodernisation
PhilippinesSingaporeSouthKoreaTaiwan(China)ThailandVietnam
Contacts●
Endnotes
10
Introduction
AICybersecurity
Overview
》
Recommendations
Deepfakesaresyntheticimages,videosoraudiorecordingsgeneratedbyAItoimitaterealpeoplewithahighdegreeofrealism.Theycanmakeitappearasthoughanindividualhassaidordonesomethingtheyneverdid,creatingriskstoinformationsecurity,reputationmanagement,andtrustindigitalcommunications.
Althoughdeepfaketechniquesareimprovingrapidly,thisisoneareawhereeffectivemitigationisalreadyachievable.Risksassociatedwithdeepfakescanbesuccessfullymitigatedbyorganisationswhichadoptrobustcybersecuritycontrolsthatbothdetectandlimitthespreadofmanipulatedcontent.Advancedmachinelearning-baseddetectiontoolscananalyseaudio-visualcuesandmetadatatoidentifyforgedmedia,whiledigitalwatermarkingandprovenance-trackingtechnologieshelpverifytheauthenticityoffiles.Thesecapabilitiescontinuetomatureandareincreasinglybeingintegratedintomainstreamcybersecurityandcontent-verificationtools.However,regularlyupdatingthesedetectionmechanismsisessential,asdeepfaketechniquescontinuetoevolve.
Inadditiontotechnicalsolutions,implementingstrictaccesscontrolsandmulti-factorauthenticationcanreducethelikelihoodofattackersobtainingoriginalcontenttocreateconvincingdeepfakes.Securityawarenesstrainingalsoplaysavitalrole;educatingemployeesandstakeholdersaboutthepotentialsignsanddangersofdeepfakesfostersacultureofvigilance.Bycombiningsophisticateddetectionsystems,accessmanagement,andongoingawarenessinitiatives,organisationscansignificantlymitigatethecybersecurityrisksposedbydeepfakes.
JurisdictionalDeepDive
AustraliaChina(Mainland)HongKongSARIndia
IndonesiaJapanMalaysiaNewZealand
PhilippinesSingaporeSouthKoreaTaiwan(China)ThailandVietnamContactsEndnotes
11
Deepfakes
Introduction
AICybersecurity
Overview
Recommendations
OverviewoftheRegulatoryLandscape
JurisdictionalDeepDive
Australia
nollnaurusgircissAP,drivenbythegrowingfrequencyandseverityofcyberincidentsandthe
China(Mainland)
Thisregulatorypatchworkcreatessignificantchallengesformultinationalfirmsthatmustensuretheircyberriskmanagementframeworksareadaptabletodifferinglocalrequirements.Inaddition,regulatoryexpectationsarerapidlyevolvinginstepwithtechnologicalchange,meaningfirmsmustremainagileandvigilanttomaintaincomplianceandavoidpenaltiesoroperationaldisruptions.
WhilemostjurisdictionsstillrelyongeneralcybersecurityframeworkstosafeguardAIsystems,regulatorsarebeginningtointroduceAI-specificsecurityexpectations.Forexample,somejurisdictionshaveintroducedrulesandguidelinesaimedatmodelrobustness,adversarialtesting,securedatahandling,andprotectionsagainstmodelmanipulation.
HongKongSAR
India
Indonesia
Authoritiesarerespondingbystrengtheningcyber-specificframeworksandembeddingcybersecurityexpectationsaspartofbroaderoperationalresilienceorAIgovernancerequirements.Nevertheless,theregulatorylandscapeacrossAPremainshighlyfragmented,witheachjurisdictioncraftingitsownrules,definitions,andenforcementpriorities.
Japan
Malaysia
NewZealand
JurisdictionssuchasAustralia,Singapore,Japan,China(Mainland)(“China”),SouthKorea,andIndiahaveenactedcomprehensivelawstoaddresscyberrisks.However,therearesignificantdifferencesinthescope,terminology,andenforcementmechanisms.Forexample,whileSingapore’sCybersecurityActfocusesontheprotectionof“criticalinformationinfrastructure”andprescribessector-specificobligations,China’sCybersecurityLawencompassesabroaderrangeofsectors,andmandateslocalisationofcriticaldata.Meanwhile,Japan’sCybersecurityBasicActtakesamorestrategic,coord
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职第一学年(康复治疗技术)康复评定技术试题及答案
- 2025年中职助产(助产技术)试题及答案
- 2025年大学(工艺美术)工艺美术概论试题及答案
- 2025年高职第一学年(现代供配电技术)供配电系统运行阶段测试试题及答案
- 2025年中职(计算机应用)数据库应用综合测试题及解析
- 2026年社保服务(参保办理)考题及答案
- 2025年高职美术教学法(教学方法)试题及答案
- 航空制造角度装配工艺规范
- 川北幼儿师范高等专科学校《道路工程和选线设计》2025-2026学年第一学期期末试卷
- 湖南医药学院《国际货运代理》2025-2026学年第一学期期末试卷
- 老公情人签约协议书
- 学堂在线雨课堂《唐宋名家词(河南大学)》网课学堂云单元测试考核答案
- 煤矿班组长安全培训
- 体育培训校区管理制度
- 住宅项目工程总承包管理策划(可编辑)
- 小学消防安全工作责任体系
- 2025广西桂林市面向全国高校招聘急需紧缺专业人才147人笔试备考试卷及答案解析(夺冠)
- 家具摆放施工方案
- 楼体亮化维修合同
- 2025年河南省人民法院聘用书记员考试试题及答案
- 二类洞充填课件
评论
0/150
提交评论