数字通信(微课版)课件 第4章 数字信号的基带传输_第1页
数字通信(微课版)课件 第4章 数字信号的基带传输_第2页
数字通信(微课版)课件 第4章 数字信号的基带传输_第3页
数字通信(微课版)课件 第4章 数字信号的基带传输_第4页
数字通信(微课版)课件 第4章 数字信号的基带传输_第5页
已阅读5页,还剩120页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数字通信第四章数字信号的基带传输

学习指南学习完本章,你应重点掌握以下内容:

基带信号的概念

数字基带信号常用的码型及其各自的特点

数字基带传输系统的组成及各部分的作用

码间串扰的概念及其对基带传输系统影响

数字基带传输不存在码间串扰的条件

判断系统是否存在码间串扰的方法

消除码间串扰的技术

数字基带传输系统采用扰码器的目的本章学习目标学习要点数字基带信号的概念数字基带信号的常用码型数字基带通信模型无码间干扰条件与无码间干扰的基带传输系统基带数字信号的再生中继传输时域均衡数字信号的扰码与解扰课堂提问什么是基带信号?举例说明基带传输系统的应用。问题提出

数字基带信号都是矩形脉冲波形,这样的信号在频域内是无穷延伸的。而实际传输信道的频带受限,并且含有噪声。因此,基带信号通过这样的信道传输不可避免地产生畸变。那么,信道的特性应满足什么条件,信号通过后不会产生失真?温故知新0000时域有限,频域无限。时域无限,时域有限。信道信道码间干扰的概念信号经频域受限的系统传输后其波形在时域上必定是无限延伸的。这样,前面的码元对后面的若干码元都有影响,这种现象称为码间干扰(或称符号间干扰,ISI)。信号在传输过程中还要叠加噪声,当噪声幅度过大时,将会引起接收端的判决错误。接收端如何识别恢复信号?问题:在此,信号的什么元素携带了信息?接收端经再生判决若能准确地恢复出幅度信息,则原始信息就能无误地传送。因此,只需要讨论特定时刻的抽样值有无串扰,而波形是否在时间上延伸是无关紧要的。即使经传输后的整个波形发生变化,但只要在特定的时刻的抽样值能反映其携带的幅度信息即可,因为再作抽样处理,仍能准确无误地恢复原始信息。无码间干扰条件

——理想的基带传输系统无失真传输的概念理想低通滤波器频率特性理想低通滤波器的响应波形问题思考?信号经过理想低通滤波器后波形有什么变化?码间串扰的概念对于一个码元信号来说,其他码元信号在其抽样判决时刻的叠加值就称为码间干扰或码间串扰。

无码间干扰的条件:若系统等效网络具有理想低通特性,且截止频率为fm时,则该系统中允许的最高码元(符号)速率为2fm,这时系统输出波形在峰值点上不会产生前后符号间的干扰。这一条件也称为奈奎斯特准则。fm称为奈奎斯特频带,2fm(Baud)称为奎斯特速率(极限速率),称为奈奎斯特间隔。奈奎斯特第一准则无码间串扰的频域条件频域条件也称为奈奎斯特第一准则,即含义:将H(f)沿频率向左右平移fs的整数倍,将它们叠加起来,其结果应当在整个频率轴上为一常数。注意:fs在数值上等于码速率。

问题:设某基带传输系统具有如下图所示的三角形传输函数。当RB=

0/

时,试验证该系统能否实现无码间串扰传输。解:因RB=ω0/π,即RB=2f0。将H(ω

)向左右平移2ω0的整数倍,可见平移后各图不重合,即相加后不为常数,故有码间串扰。0−ω0ω02ω03ω0−2ω0−3ω0ωH(ω)H(ω−ωs)H(ω−2

ωs

)H(ω+ωs)H(ω+2ωs)设基带传输系统的传输特性如图所示。若要求以2/TsBaud的速率进行数据传输。试验证图中的各H(

)是否满足消除抽样点上码间干扰的条件。无码间串扰的滚降系统特性

达到了系统有效性能极限传输函数具有无限陡峭过渡带

h(t)

“尾巴”拖得很长,且衰减振荡幅度较大判决时对抽样定时要求严格

实际中采用的是具有滚降特性的无码间串扰系统,这种系统克服了理想低通传输特性的缺陷。理想低通系统特点:升余弦滚降特性及其冲激响应波形滚降系数α:描述H(w)

滚降程度的系数。具有升余弦滚降的系统特性升余弦滚降特性及对应冲激响应升余弦滚降特性(滚降系数越小,波形越陡)冲激响应升余弦系统频带带宽为:

(赫兹)最高无码间串扰传输速率为:无码间串扰的滚降系统特性

系统最高频带利用率为:(波特/赫兹)

问题理想低通滤波器构成的基带传输系统其频带利用率是多大?某基带系统的频率特性是截止频率为1.5MHz、幅度为1的理想低通滤波器。试根据系统无码间串扰的时域条件,此基带系统无码间串扰的码速率是多大?升余弦特性的基带传输系统问题提出:理想低通滤波器有什么问题?折衷解决方案:升余弦特性的滤波器提示:滚降的含义是什么?问题:α越大,系统的频带利用率越?。具有升余弦滚降幅频特性的系统的频带利用率为:

部分响应编码:一种既能消除码间串扰,又能达到最高频带利用率的系统。理想低通系统:达到了极限频带利用率;

实现困难,且拖尾严重。升余弦滚降系统:克服了理想低通系统缺点;

频带利用率下降了。部分响应基带传输系统及特性实现方法:利用奈奎斯特脉冲的延时加权组合得到部分响应波形来实现。这种方法又称为波形的相关编码法。

部分响应基带传输系统中,通过有控制地引入一定的码间串扰,来达到压缩传输频带的目的。部分响应系统实现方法余弦谱传输特性

为了得到部分响应波形,把间隔为T(码元间隔)的两个奈奎斯特脉冲叠加得到合成波。其频谱特性为:

0谱余弦特性及响应从图中还可以看出,g(t)在各取样点上的值为:余弦谱传输特性可控码间串扰示意图

若用g(t)作为传输波形,且码元间隔为T,则在抽样时刻仅发生传输码元与其前后码元相互串扰,而与其它码元不发生串扰,如图示。余弦谱传输特性余弦谱传输特性(1)g(t)的“尾巴”按1/t2

的速度变化,比sint/t

波形收敛快,衰减大;(2)若用g(t)作为传输波形,且码元间隔为T,则在抽样时发生传输码元与其前后码元相互串扰,而与其它码元不发生串扰。由于这种串扰是确定的,因此可以消除其影响,使系统成为无码间串扰的系统---这就是可控码间串扰;(3)由于余弦谱特性的带宽为1/2T,而传输速率为1/T,因而这种系统的频带利用率达到了2波特/赫兹。设发送码元为ak,接收码元为ck

,则有

或为防止误码扩散,可进行预编码,它在发端将

ak

变为bk或预编码余弦谱传输特性误码扩散:前一码元判错,影响下一码元。接收端对收到的码进行模2和运算,就可以恢复ak

,即余弦谱传输特性然后发送

bk

而不是ak

,这样接收码元为----------相关编码正弦谱特性将间隔为2T的两个奈奎斯特脉冲相减得到合成波形为其频谱特性为0正弦谱特性及响应(1)G(w)具有滚降的正弦谱特性,且

G(0)=0,因而g(t)不含直流分量;(2)码元波形仅对隔一个码元有串扰,对其它码元无串扰,但由于串扰是确定的,因而可以消除其影响;(3)系统的频带利用率同样达到2波特/赫兹。正弦谱特性部分响应系统

将更多个不同间隔的奈奎斯特脉冲加权组合,得到部分响应波形的一般形式,其表示式为:其频谱为:

0部分响应波形及其频谱

根据加权系数Ri

的不同,可以得到不同种类的部分响应波形图中列出了常用的部分响应波形及其频谱,实际系统中,第Ⅳ类部分响应波形应用最广。

部分响应系统

0类I类II类V类IV类III类

设发送数字序列为

{ak},则接收端在时刻

t=kT

的抽样值

{ck}为上式说明,ck不仅与

ak有关,而且与

ak以前的N个码元有关。

为消除接收端的误码扩散,发送端也应采取预编码,把

ak变换为

bk后再发送,编码规则如下:

部分响应系统

(按模L)(算术加)然后将预编码后的序列进行相关编码,得接收端对

ck

作模L运算,则有部分响应系统

作业数字通信第四章数字信号的基带传输

学习要点数字基带信号的概念数字基带信号的常用码型数字基带通信模型无码间干扰条件与无码间干扰的基带传输系统基带数字信号的再生中继传输时域均衡数字信号的扰码与解扰课堂提问什么是基带信号?举例说明基带传输系统的应用。问题提出

数字基带信号都是矩形脉冲波形,这样的信号在频域内是无穷延伸的。而实际传输信道的频带受限,并且含有噪声。因此,基带信号通过这样的信道传输不可避免地产生畸变。那么,信道的特性应满足什么条件,信号通过后不会产生失真?温故知新0000时域有限,频域无限。时域无限,时域有限。信道信道码间干扰的概念信号经频域受限的系统传输后其波形在时域上必定是无限延伸的。这样,前面的码元对后面的若干码元都有影响,这种现象称为码间干扰(或称符号间干扰,ISI)。信号在传输过程中还要叠加噪声,当噪声幅度过大时,将会引起接收端的判决错误。接收端如何识别恢复信号?问题:在此,信号的什么元素携带了信息?接收端经再生判决若能准确地恢复出幅度信息,则原始信息就能无误地传送。因此,只需要讨论特定时刻的抽样值有无串扰,而波形是否在时间上延伸是无关紧要的。即使经传输后的整个波形发生变化,但只要在特定的时刻的抽样值能反映其携带的幅度信息即可,因为再作抽样处理,仍能准确无误地恢复原始信息。无码间干扰条件

——理想的基带传输系统无失真传输的概念理想低通滤波器频率特性理想低通滤波器的响应波形问题思考?信号经过理想低通滤波器后波形有什么变化?码间串扰的概念对于一个码元信号来说,其他码元信号在其抽样判决时刻的叠加值就称为码间干扰或码间串扰。

无码间干扰的条件:若系统等效网络具有理想低通特性,且截止频率为fm时,则该系统中允许的最高码元(符号)速率为2fm,这时系统输出波形在峰值点上不会产生前后符号间的干扰。这一条件也称为奈奎斯特准则。fm称为奈奎斯特频带,2fm(Baud)称为奎斯特速率(极限速率),称为奈奎斯特间隔。奈奎斯特第一准则无码间串扰的频域条件频域条件也称为奈奎斯特第一准则,即含义:将H(f)沿频率向左右平移fs的整数倍,将它们叠加起来,其结果应当在整个频率轴上为一常数。注意:fs在数值上等于码速率。

示例1:设某基带传输系统具有如下图所示的三角形传输函数。当RB=

0/

时,试验证该系统能否实现无码间串扰传输。解:因RB=ω0/π,即RB=2f0。将H(ω

)向左右平移2ω0的整数倍,可见平移后各图不重合,即相加后不为常数,故有码间串扰。0−ω0ω02ω03ω0−2ω0−3ω0ωH(ω)H(ω−ωs)H(ω−2ωs

)H(ω+ωs)H(ω+2ωs)

示例2:设基带传输系统的传输特性如图所示。若要求以2/TsBaud的速率进行数据传输。试验证图中的各H(

)是否满足消除抽样点上码间干扰的条件。无码间串扰的滚降系统特性

达到了系统有效性能极限传输函数具有无限陡峭过渡带

h(t)

“尾巴”拖得很长,且衰减振荡幅度较大判决时对抽样定时要求严格

实际中采用的是具有滚降特性的无码间串扰系统,这种系统克服了理想低通传输特性的缺陷。理想低通系统特点:升余弦滚降特性及其冲激响应波形滚降系数α:描述H(w)

滚降程度的系数。具有升余弦滚降的系统特性升余弦滚降特性及对应冲激响应

升余弦滚降特性(滚降系数越小,波形越陡)冲激响应升余弦系统频带带宽为:

(赫兹)最高无码间串扰传输速率为:无码间串扰的滚降系统特性

系统最高频带利用率为:(波特/赫兹)

问题理想低通滤波器构成的基带传输系统其频带利用率是多大?某基带系统的频率特性是截止频率为1.5MHz、幅度为1的理想低通滤波器。试根据系统无码间串扰的时域条件,此基带系统无码间串扰的码速率是多大?升余弦特性的基带传输系统问题提出:理想低通滤波器有什么问题?折衷解决方案:升余弦特性的滤波器提示:滚降的含义是什么?问题:α越大,系统的频带利用率越?。具有升余弦滚降幅频特性的系统的频带利用率为:

部分响应编码:一种既能消除码间串扰,又能达到最高频带利用率的系统。理想低通系统:达到了极限频带利用率;

实现困难,且拖尾严重。升余弦滚降系统:克服了理想低通系统缺点;

频带利用率下降了。部分响应基带传输系统及特性实现方法:利用奈奎斯特脉冲的延时加权组合得到部分响应波形来实现。这种方法又称为波形的相关编码法。

部分响应基带传输系统中,通过有控制地引入一定的码间串扰,来达到压缩传输频带的目的。部分响应系统实现方法余弦谱传输特性

为了得到部分响应波形,把间隔为T(码元间隔)的两个奈奎斯特脉冲叠加得到合成波。其频谱特性为:

0余弦谱特性及响应从图中还可以看出,g(t)在各取样点上的值为:余弦谱传输特性可控码间串扰示意图

若用g(t)作为传输波形,且码元间隔为T,则在抽样时刻仅发生传输码元与其前后码元相互串扰,而与其它码元不发生串扰,如图示。余弦谱传输特性余弦谱传输特性(1)g(t)的“尾巴”按1/t2

的速度变化,比sint/t

波形收敛快,衰减大;(2)若用g(t)作为传输波形,且码元间隔为T,则在抽样时发生传输码元与其前后码元相互串扰,而与其它码元不发生串扰。由于这种串扰是确定的,因此可以消除其影响,使系统成为无码间串扰的系统---这就是可控码间串扰;(3)由于余弦谱特性的带宽为1/2T,而传输速率为1/T,因而这种系统的频带利用率达到了2波特/赫兹。设发送码元为ak,接收码元为ck

,则有

或为防止误码扩散,可进行预编码,它在发端将

ak

变为bk或预编码余弦谱传输特性误码扩散:前一码元判错,影响下一码元。接收端对收到的码进行模2和运算,就可以恢复ak

,即余弦谱传输特性然后发送

bk

而不是ak

,这样接收码元为----------相关编码正弦谱特性将间隔为2T的两个奈奎斯特脉冲相减得到合成波形为其频谱特性为0正弦谱特性及响应(1)G(w)具有滚降的正弦谱特性,且

G(0)=0,因而g(t)不含直流分量;(2)码元波形仅对隔一个码元有串扰,对其它码元无串扰,但由于串扰是确定的,因而可以消除其影响;(3)系统的频带利用率同样达到2波特/赫兹。正弦谱特性部分响应系统

将更多个不同间隔的奈奎斯特脉冲加权组合,得到部分响应波形的一般形式,其表示式为:其频谱为:

0部分响应波形及其频谱

根据加权系数Ri

的不同,可以得到不同种类的部分响应波形图中列出了常用的部分响应波形及其频谱,实际系统中,第Ⅳ类部分响应波形应用最广。

部分响应系统

0类I类II类V类IV类III类

设发送数字序列为

{ak},则接收端在时刻

t=kT

的抽样值

{ck}为上式说明,ck不仅与

ak有关,而且与

ak以前的N个码元有关。

为消除接收端的误码扩散,发送端也应采取预编码,把

ak变换为

bk后再发送,编码规则如下:

部分响应系统

(按模L)(算术加)然后将预编码后的序列进行相关编码,得接收端对

ck

作模L运算,则有部分响应系统

作业数字通信

ISSUE4.4-4.54.4数字基带信号的再生中继传输再生中继系统再生中继器再生中继传输的性能分析内容提要4.4.1再生中继系统

在基带信号信噪比不太大的条件下,再生中继系统对失真的波形及时识别判决,识别出“1”码和“0”码,只要不误判,经过再生中继后的输出脉冲会完全恢复为原数字信号序列。基带传输的再生中继系统

再生中继系统框图

再生中继系统的特点:

(1)无噪声积累。数字信号在传输过程中会受到数字通信中的再生中继系统噪声的影响,主要会导致信号幅度的失真。但这种失真可通过再生中继系统中的均衡放大、再生判决而取掉,所以理想的再生中继系统是不存在噪声积累的。

(2)有误码的积累。再生中继系统在再生判决的过程中,由于码间串扰和噪声干扰的影响,会导致判决电路的错误判决,即“1”码误判为“0”码,“0”码误判为“1”码,这就是误码现象。一旦误码发生,就无法消除,反而随着通信距离的增长,误码会产生积累。因为各个再生中继器都有可能误码,通信距离越长,中继站也就越多,误码的积累也越多。4.4.2再生中继器再生中继器的框图:1.均衡放大均衡放大的作用是将接收到的失真信号均衡放大成适合于抽样判决的波形,这个波形称为均衡波形,用r(t)表示。适合再生判决的均衡波形R(t)应满足以下要求:

(1)波形幅度大且波峰附近变化要平坦。一个“1”码对应的均衡波形R(t)如图所示:假如在再生判决的时刻由于各种原因引起定时抖动,使再生判决的脉冲发生偏移,由于波形幅度大且波峰附近变化平坦,所以不会发生误判,“1”码仍可还原为“1”码。反之则有可能判为“0”码。

(2)相邻码间串扰尽量小。实际的传输系统中均衡波形不能做到绝对无码间串扰,但应尽量使邻码间串扰小,不足导致下一个码元的误判为原则。满足要求的常用均衡波形有:升余弦波形和有理函数均衡波形升余弦均衡波形:升余弦波形的特点是:波峰变化较慢,不会因为定时抖动引起误判而造成误码,而且R(t)满足无码间串扰条件。升余弦波形R(t)可表示为

由于线路衰减比较大,而且频率越高,衰减越大。因此均衡放大特性必须抑制线路的衰减,得到一个较理想的升余弦均衡波形。有理函数均衡波形:有理函数均衡波形的特点是:r(t)波峰变化较慢,脉宽为半波峰对应的宽度(等于αTb,α为占空比),有下冲拖尾,可能造成码间串扰。有理函数均衡特性可以用RC电路予以实现,相对容易一些。只要做到使码间串扰减小到最地程度,不造成误码,就是一种比较好的均衡波形

2.定时钟提取

定时钟提取就是从已接收的信号中提取与发送端定时钟同步的定时脉冲,以便在最佳时刻识别判决均衡波的“1”码“0”码,并把它们恢复成一定宽度和幅度的脉冲。定时钟提取的方法有外同步定时法和自同步定时法两种,这些将在第8章定时与同步中详细论述。

3.抽样判决与码形成抽样判决与码形成就是判决再生,也叫识别再生,识别是指从已经均衡好的均衡波形中识别出“1”码还是“0”码;再生就是将判决出来的码元进行整形与变换,形成半占空的双极性码,即码形成。为了达到正确的识别,抽样判决应该在最佳时刻进行,即在均衡波的波峰处进行识别。

4.再生中继器方框图再生中继器完整的方框图:假设发送信码s(t)为“+10-1”,经信道传输后s(t)波形产生失真。均放将其失真波形均衡放大成均衡波形R(t)。对R(t)进行全波整流后,其频谱中含有丰富的fb成分;调谐电路只选出fb成分,输出频率为fb的正弦信号;相位调整电路将频率为fb的正弦信号进行相位调整,使后面的抽样判决脉冲能够对准均衡波形R(t)的最佳位置,以便正确抽样判决;限幅整形电路将正弦信号转换为矩形脉冲,此周期性矩形脉冲信号就是定时钟信号。定时钟信号经过微分电路后便得到抽样判决脉冲(只需正的脉冲即可)。最后,经过抽样判决和码形成便恢复出原脉冲信号序列“+10-1”。4.4.3再生中继传输性能分析再生中继传输系统产生误码的原因有噪声、串音及码间串扰等,其信道噪声在一个再生段产生的的误码率与式(4-39)、(4-40)相同。在实际的再生中继系统中,误码率比以上结果要大得多。实际的再生中继系统包含有多个再生中继段,那么,总误码率PE与每一个再生中继段的误码率Pei有什么关系呢?

一般认为,当每一个再生中继段的误码率Pei很小时,在前一个再生中继段所产生的误码率传输到后一个再生中继段时,因后一个再生中继段的误判,而将前一个再生中继段的误码率纠正过来的概率是非常小的。所以,可近似认为各再生中继段的误码是互不相关的,这样具有m个再生中继段的误码率PE为

当每个再生中继段的误码率均为Pe时,全程总误码率为

PE≈mPe

实际上,在各中继段误码率不相等的情况下,全程总误码率主要由信噪比最差的再生中继段所决定。另外,基带数字序列经信道传输后,各中继站和终端站接收的脉冲信号在时间上不再是等间距的,而是随时间变动的,这种现象称为相位抖动。相位抖动不仅使再生判决时刻的时钟信号偏离被判决信号的最大值而产生误码,而且使解码后的PAM脉冲发生相位抖动,使重建的波形产生失真。因此在基带数字信号传输中应采取去抖动技术限制抖动的发生。4.5基带传输系统测量工具——眼图数字通信

ISSUE4.6

4.6时域均衡技术时域均衡概述横向滤波器的工作原理横向滤波器的度量标准

内容提要为什么要采用均衡技术?由于受信道传输特性和噪声的影响,实际的数字基带传输系统不可能完全满足无码间干扰的理想传输条件。当码间干扰严重时,必须要对系统的传输特性(传输函数)进行修正。为此,在基带系统中插入一种称为均衡器的可调滤波器,用以补偿整个基带系统的幅频和相频特性。

时域均衡可以在频域和时域中实现校正幅频特性和相频特性,使整个系统总的传输特性满足无失真的传输条件。频域均衡时域均衡

从时域角度使包括均衡器在内的整个系统的冲激响应满足无码间干扰的传输条件。

时域均衡是利用波形补偿的方法对失真的波形直接加以补偿。时域均衡的基本原理这个虚线波形称

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论