人教版复数选择题专项训练单元-期末复习综合模拟测评检测_第1页
人教版复数选择题专项训练单元-期末复习综合模拟测评检测_第2页
人教版复数选择题专项训练单元-期末复习综合模拟测评检测_第3页
人教版复数选择题专项训练单元-期末复习综合模拟测评检测_第4页
人教版复数选择题专项训练单元-期末复习综合模拟测评检测_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版复数选择题专项训练单元期末复习综合模拟测评检测一、复数选择题1.若,则()A. B. C. D.答案:C【分析】根据复数单位的幂的周期性和复数除法的运算法则进行求解即可.【详解】由已知可得,所以.故选:C解析:C【分析】根据复数单位的幂的周期性和复数除法的运算法则进行求解即可.【详解】由已知可得,所以.故选:C2.若复数(其中为虚数单位),则复数的模为()A. B. C. D.答案:B【分析】由已知等式,利用复数的运算法则化简复数,即可求其模.【详解】,所以,故选:B解析:B【分析】由已知等式,利用复数的运算法则化简复数,即可求其模.【详解】,所以,故选:B3.已知复数(其中是虚数单位),则在复平面内对应点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限答案:D【分析】先由复数的运算化简复数z,再运用复数的几何表示可得选项.【详解】由已知得,所以复数z在复平面上所对应的点为,在第四象限,故选:D.解析:D【分析】先由复数的运算化简复数z,再运用复数的几何表示可得选项.【详解】由已知得,所以复数z在复平面上所对应的点为,在第四象限,故选:D.4.若复数,则()A. B. C. D.答案:D【分析】由复数乘法运算求得,根据共轭复数定义可求得结果.【详解】,.故选:.解析:D【分析】由复数乘法运算求得,根据共轭复数定义可求得结果.【详解】,.故选:.5.若复数,则()A. B.2 C. D.4答案:A【分析】将代入,利用复数的除法运算化简,再利用复数的求模公式求解.【详解】由,得,则,故选:A.解析:A【分析】将代入,利用复数的除法运算化简,再利用复数的求模公式求解.【详解】由,得,则,故选:A.6.若复数满足,则复数的虚部为()A. B. C. D.答案:A【分析】由复数的除法法则和乘法法则计算出,再由复数的定义得结论.【详解】由题意,得,其虚部为,故选:A.解析:A【分析】由复数的除法法则和乘法法则计算出,再由复数的定义得结论.【详解】由题意,得,其虚部为,故选:A.7.若复数,则()A. B. C. D.答案:A【分析】首先化简复数,再计算求模.【详解】,.故选:A解析:A【分析】首先化简复数,再计算求模.【详解】,.故选:A8.若,则()A. B.4 C. D.8答案:A【分析】化简复数,求共轭复数,利用复数的模的定义得.【详解】因为,所以,所以故选:A解析:A【分析】化简复数,求共轭复数,利用复数的模的定义得.【详解】因为,所以,所以故选:A9.已知复数,为的共轭复数,则()A. B.2 C.10 D.答案:D【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案.【详解】因为,所以,,所以,故选:D.解析:D【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案.【详解】因为,所以,,所以,故选:D.10.若,则在复平面内,复数所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限答案:D【分析】根据复数的运算,先化简复数,再由复数的几何意义确定对应点的坐标,进而可得出结果.【详解】,则复数对应的点的坐标为,位于第四象限.故选:D.解析:D【分析】根据复数的运算,先化简复数,再由复数的几何意义确定对应点的坐标,进而可得出结果.【详解】,则复数对应的点的坐标为,位于第四象限.故选:D.11.复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限答案:A【分析】利用复数的乘法化简复数,利用复数的乘法可得出结论.【详解】,因此,复数在复平面内对应的点位于第一象限.故选:A.解析:A【分析】利用复数的乘法化简复数,利用复数的乘法可得出结论.【详解】,因此,复数在复平面内对应的点位于第一象限.故选:A.12.复数,则的共轭复数()A. B. C. D.答案:D【分析】由复数的四则运算求出,即可写出其共轭复数.【详解】∴,故选:D解析:D【分析】由复数的四则运算求出,即可写出其共轭复数.【详解】∴,故选:D13.设复数满足,则=()A.1 B. C. D.2答案:B【分析】由复数除法求得,再由模的运算求得模.【详解】由题意,∴.故选:B.解析:B【分析】由复数除法求得,再由模的运算求得模.【详解】由题意,∴.故选:B.14.已知复数,则的虚部为()A.1 B. C. D.答案:B【分析】化简复数,可得,结合选项得出答案.【详解】则,的虚部为故选:B解析:B【分析】化简复数,可得,结合选项得出答案.【详解】则,的虚部为故选:B15.复数对应的向量与共线,对应的点在第三象限,且,则()A. B. C. D.答案:D【分析】设,根据复数对应的向量与共线,得到,再结合求解.【详解】设,则复数对应的向量,因为向量与共线,所以,又,所以,解得或,因为复数对应的点在第三象限,所以,所以,,解析:D【分析】设,根据复数对应的向量与共线,得到,再结合求解.【详解】设,则复数对应的向量,因为向量与共线,所以,又,所以,解得或,因为复数对应的点在第三象限,所以,所以,,故选:D二、复数多选题16.已知复数满足,则可能为()A.0 B. C. D.答案:ACD【分析】令代入已知等式,列方程组求解即可知的可能值.【详解】令代入,得:,∴,解得或或∴或或.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.解析:ACD【分析】令代入已知等式,列方程组求解即可知的可能值.【详解】令代入,得:,∴,解得或或∴或或.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.17.已知复数(为虚数单位),为的共轭复数,若复数,则下列结论正确的有()A.在复平面内对应的点位于第二象限 B.C.的实部为 D.的虚部为答案:ABC【分析】对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解.【详解】对选项由题得.所以复数对应的点为,在第二象限,所以选项正确解析:ABC【分析】对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解.【详解】对选项由题得.所以复数对应的点为,在第二象限,所以选项正确;对选项,因为,所以选项正确;对选项复数的实部为,所以选项正确;对选项,的虚部为,所以选项错误.故选:ABC【点睛】本题主要考查复数的运算和共轭复数,考查复数的模的计算,考查复数的几何意义,考查复数的实部和虚部的概念,意在考查学生对这些知识的理解掌握水平.18.下列结论正确的是()A.已知相关变量满足回归方程,则该方程相应于点(2,29)的残差为1.1B.在两个变量与的回归模型中,用相关指数刻画回归的效果,的值越大,模型的拟合效果越好C.若复数,则D.若命题:,,则:,答案:ABD【分析】根据残差的计算方法判断A,根据相关指数的性质判断B,根据复数的模长公式判断C,根据否定的定义判断D.【详解】当时,,则该方程相应于点(2,29)的残差为,则A正确;在两个变量解析:ABD【分析】根据残差的计算方法判断A,根据相关指数的性质判断B,根据复数的模长公式判断C,根据否定的定义判断D.【详解】当时,,则该方程相应于点(2,29)的残差为,则A正确;在两个变量与的回归模型中,的值越大,模型的拟合效果越好,则B正确;,,则C错误;由否定的定义可知,D正确;故选:ABD【点睛】本题主要考查了残差的计算,求复数的模,特称命题的否定,属于中档题.19.已知复数(其中为虚数单位),则以下说法正确的有()A.复数的虚部为 B.C.复数的共轭复数 D.复数在复平面内对应的点在第一象限答案:BCD【分析】根据复数的概念判定A错,根据复数模的计算公式判断B正确,根据共轭复数的概念判断C正确,根据复数的几何意义判断D正确.【详解】因为复数,所以其虚部为,即A错误;,故B正确;解析:BCD【分析】根据复数的概念判定A错,根据复数模的计算公式判断B正确,根据共轭复数的概念判断C正确,根据复数的几何意义判断D正确.【详解】因为复数,所以其虚部为,即A错误;,故B正确;复数的共轭复数,故C正确;复数在复平面内对应的点为,显然位于第一象限,故D正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.20.设i为虚数单位,复数,则下列命题正确的是()A.若为纯虚数,则实数a的值为2B.若在复平面内对应的点在第三象限,则实数a的取值范围是C.实数是(为的共轭复数)的充要条件D.若,则实数a的值为2答案:ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】∴选项A:为纯虚数,有可得,故正确选项B解析:ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】∴选项A:为纯虚数,有可得,故正确选项B:在复平面内对应的点在第三象限,有解得,故错误选项C:时,;时,即,它们互为充要条件,故正确选项D:时,有,即,故正确故选:ACD【点睛】本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围21.任何一个复数(其中、,为虚数单位)都可以表示成:的形式,通常称之为复数的三角形式.法国数学家棣莫弗发现:,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是()A.B.当,时,C.当,时,D.当,时,若为偶数,则复数为纯虚数答案:AC【分析】利用复数的三角形式与模长公式可判断A选项的正误;利用复数的棣莫弗定理可判断B选项的正误;计算出复数,可判断C选项的正误;计算出,可判断D选项的正误.【详解】对于A选项,,则,可得解析:AC【分析】利用复数的三角形式与模长公式可判断A选项的正误;利用复数的棣莫弗定理可判断B选项的正误;计算出复数,可判断C选项的正误;计算出,可判断D选项的正误.【详解】对于A选项,,则,可得,,A选项正确;对于B选项,当,时,,B选项错误;对于C选项,当,时,,则,C选项正确;对于D选项,,取,则为偶数,则不是纯虚数,D选项错误.故选:AC.【点睛】本题考查复数的乘方运算,考查了复数的模长、共轭复数的运算,考查计算能力,属于中等题.22.已知复数(其中为虚数单位),则以下结论正确的是()A. B. C. D.答案:BCD【分析】利用复数的运算法则直接求解.【详解】解:复数(其中为虚数单位),,故错误;,故正确;,故正确;.故正确.故选:.【点睛】本题考查命题真假的判断,考查复数的运算法则解析:BCD【分析】利用复数的运算法则直接求解.【详解】解:复数(其中为虚数单位),,故错误;,故正确;,故正确;.故正确.故选:.【点睛】本题考查命题真假的判断,考查复数的运算法则等基础知识,考查运算求解能力,属于基础题.23.以下为真命题的是()A.纯虚数的共轭复数等于 B.若,则C.若,则与互为共轭复数 D.若,则与互为共轭复数答案:AD【分析】根据纯虚数的概念即可判断A选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD选项.【详解】解:对于A,若为纯虚数,可设,则,即纯虚数的共轭复数等于,故A正确;对于B解析:AD【分析】根据纯虚数的概念即可判断A选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD选项.【详解】解:对于A,若为纯虚数,可设,则,即纯虚数的共轭复数等于,故A正确;对于B,由,得出,可设,则,则,此时,故B错误;对于C,设,则,则,但不一定相等,所以与不一定互为共轭复数,故C错误;对于D,,则,则与互为共轭复数,故D正确.故选:AD.【点睛】本题考查与复数有关的命题的真假性,考查复数的基本概念和运算,涉及实数、纯虚数和共轭复数的定义,属于基础题.24.(多选)表示()A.点与点之间的距离 B.点与点之间的距离C.点到原点的距离 D.坐标为的向量的模答案:ACD【分析】由复数的模的意义可判断选项A,B;整理原式等于,也等于,即可判断选项C,D【详解】由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A说法正确,B解析:ACD【分析】由复数的模的意义可判断选项A,B;整理原式等于,也等于,即可判断选项C,D【详解】由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A说法正确,B说法错误;,可表示点到原点的距离,故C说法正确;,可表示表示点到原点的距离,即坐标为的向量的模,故D说法正确,故选:ACD【点睛】本题考查复数的几何意义,考查复数的模25.设复数z满足,i为虚数单位,则下列命题正确的是()A. B.复数z在复平面内对应的点在第四象限C.z的共轭复数为 D.复数z在复平面内对应的点在直线上答案:AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】,A正确;复数z在复平面内对应的点的坐标为,在第三象限,B不正确;z的共轭复数为,C正确;复数z在复平面内对解析:AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】,A正确;复数z在复平面内对应的点的坐标为,在第三象限,B不正确;z的共轭复数为,C正确;复数z在复平面内对应的点不在直线上,D不正确.故选:AC【点睛】本小题主要考查复数的有关知识,属于基础题.26.已知复数(a,,i为虚数单位),且,下列命题正确的是()A.z不可能为纯虚数 B.若z的共轭复数为,且,则z是实数C.若,则z是实数 D.可以等于答案:BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当时,,此时为纯虚数,A错误;若z的共轭复数为,且,则,因此,B正确;由是实数,且知,z是实数,C正确;由解析:BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当时,,此时为纯虚数,A错误;若z的共轭复数为,且,则,因此,B正确;由是实数,且知,z是实数,C正确;由得,又,因此,,无解,即不可以等于,D错误.故选:BC【点睛】本小题主要考查复数的有关知识,属于基础题.27.若复数,则()A.B.z的实部与虚部之差为3C.D.z在复平面内对应的点位于第四象限答案:AD【分析】根据复数的运算先求出复数z,再根据定义、模、几何意义即可求出.【详解】解:,,z的实部为4,虚部为,则相差5,z对应的坐标为,故z在复平面内对应的点位于第四象限,所以AD正解析:AD【分析】根据复数的运算先求出复数z,再根据定义、模、几何意义即可求出.【详解】解:,,z的实部为4,虚部为,则相差5,z对应的坐标为,故z在复平面内对应的点位于第四象限,所以AD正确,故选:AD.28.设复数满足,则下列说法错误的是()A.为纯虚数 B.的虚部为C.在复平面内,对应的点位于第三象限 D.答案:AB【分析】先由复数除法运算可得,再逐一分析选项,即可得答案.【详解】由题意得:,即,所以z不是纯虚数,故A错误;复数z的虚部为,故B错误;在复平面内,对应的点为,在第三象限,故C正确解析:AB【分析】先由复数除法运算可得,再逐一分析选项,即可得答案.【详解】由题意得:,即,所以z不是纯虚数,故A错误;复数z的虚部为,故B错误;在复平面内,对应的点为,在第三象限,故C正确;,故D正确.故选:AB【点睛】本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论