版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版中学七7年级下册数学期末测试题(附答案)一、选择题1.的平方根是()A. B. C. D.2.如图为一只小兔,将图进行平移,得到的图形可能是下列选项中的()A. B.C. D.3.点在第二象限内,则点在第______象限.A.一 B.二 C.三 D.四4.下列两个命题:①过一点有且只有一条直线和已知直线平行;②垂直于同一条直线的两条直线互相平行,其中判断正确的是()A.①②都对 B.①对②错 C.①②都错 D.①错②对5.如图,点在延长线上,、交于,且,,比的余角小,为线段上一动点,为上一点,且满足,为的平分线.则下列结论:①;②平分;③;④的角度为定值.其中正确结论的个数有()A.1个 B.2个 C.3个 D.4个6.下列各组数中,互为相反数的是()A.与 B.与 C.与 D.与7.一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则∠1的度数为()A.90° B.75° C.65° D.60°8.如图,在平面直角坐标系中,,,,,把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点处,并按的规律绕在四边形的边上,则细线另--端所在位置的点的坐标是()A. B. C. D.九、填空题9.若|y+6|+(x﹣2)2=0,则yx=_____.十、填空题10.已知点在第四象限,,则点A关于y轴对称的坐标是__________.十一、填空题11.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,若△ABC的面积为15,DE=3,AB=6,则AC的长是_______十二、填空题12.如图:已知AB∥CD,CE∥BF,∠AEC=45°,则∠BFD=_____.十三、填空题13.如图,沿折痕折叠长方形,使C,D分别落在同一平面内的,处,若,则的大小是_______.十四、填空题14.“”定义新运算:对于任意的有理数a和b,都有.例如:.当m为有理数时,则等于________.十五、填空题15.在平面直角坐标系中,已知点P(﹣2,3),PA∥y轴,PA=3,则点A的坐标为__.十六、填空题16.如图,在平面直角坐标系中,点由原点出发,第一次跳动至点,第二次向左跳动3个单位至点,第三次跳动至点,第四次向左跳动5个单位至点,第五次跳动至点,…,依此规律跳动下去,点的第2020次跳动至点的坐标是_______.十七、解答题17.(1)计算:(2)解方程:十八、解答题18.求下列各式中的值:(1);(2).十九、解答题19.完成下面的证明:如图,点、、分别是三角形的边、、上的点,连接,,,,连接交于点,求证:.证明:∵(已知)∴(_______________)又∵(已知)∴(______________)∴(_____________)∴(______________)二十、解答题20.以学校为坐标原点建立平面直角坐标系,图中标明了这所学校附近的一些地方,(1)公交车站的坐标是,宠物店的坐标是;(2)在图中标出公园,书店的位置;(3)将医院的位置怎样平移得到人寿保险公司的位置.二十一、解答题21.已知是的整数部分,是的小数部分,求代数式的平方根.二十二、解答题22.喜欢探究的亮亮同学拿出形状分别是长方形和正方形的两块纸片,其中长方形纸片的长为,宽为,且两块纸片面积相等.(1)亮亮想知道正方形纸片的边长,请你帮他求出正方形纸片的边长;(结果保留根号)(2)在长方形纸片上截出两个完整的正方形纸片,面积分别为和,亮亮认为两个正方形纸片的面积之和小于长方形纸片的总面积,所以一定能截出符合要求的正方形纸片来,你同意亮亮的见解吗?为什么?(参考数据:,)二十三、解答题23.如图1,//,点、分别在、上,点在直线、之间,且.(1)求的值;(2)如图2,直线分别交、的角平分线于点、,直接写出的值;(3)如图3,在内,;在内,,直线分别交、分别于点、,且,直接写出的值.二十四、解答题24.如图,已知AM∥BN,∠A=64°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)①∠ABN的度数是;②∵AM∥BN,∴∠ACB=∠;(2)求∠CBD的度数;(3)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律;(4)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是.二十五、解答题25.已知,如图1,直线l2⊥l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C不与点A重合,点D在直线11上,点A的右侧,过D作l3⊥l1,点E在直线l3上,点D的下方.(1)l2与l3的位置关系是;(2)如图1,若CE平分∠BCD,且∠BCD=70°,则∠CED=°,∠ADC=°;(3)如图2,若CD⊥BD于D,作∠BCD的角平分线,交BD于F,交AD于G.试说明:∠DGF=∠DFG;(4)如图3,若∠DBE=∠DEB,点C在射线AM上运动,∠BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索∠N:∠BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.【参考答案】一、选择题1.B解析:B【分析】直接根据平方根的定义进行解答即可.【详解】解:∵(±3)2=9,∴9的平方根是±3.故选:B.【点睛】本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.2.C【分析】根据平移的特点即可判断.【详解】将图进行平移,得到的图形是故选C.【点睛】此题主要考查平移的特点,解题的关键是熟知平移的定义.解析:C【分析】根据平移的特点即可判断.【详解】将图进行平移,得到的图形是故选C.【点睛】此题主要考查平移的特点,解题的关键是熟知平移的定义.3.D【分析】先根据第二象限内点的横坐标是负数,纵坐标是正数判断出m、n的正负情况,再根据各象限内点的坐标特征求解.【详解】解:∵点P(m,n)在第二象限,∴m<0,n>0,∴-m>0,m-n<0,∴点Q(-m,m-n)在第四象限.故选D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.C【分析】根据平行公理及其推论判断即可.【详解】解:①过直线外一点有且只有一条直线和已知直线平行,故错误;②在同一平面内,垂直于同一条直线的两条直线互相平行,故错误;故选:C.【点睛】本题主要考查了命题与定理,平行公理及其推论,属于基础知识,要牢牢掌握.5.D【分析】①由可得AE∥BD,进而得到,结合即可得到结论;②由得出,结合即可得解;③由平行线的性质和内角和定理判断即可;④根据角平分线的性质求解即可;【详解】∵,∴AE∥BD,∴,∵,∴,∴,结论①正确;∵,∴,∵,∴,∴平分,结论②正确;∵,∴,∵比的余角小,∴,∵,,∴,结论③正确;∵为的平分线,∴,∵,∴,∴,结论④正确;故正确的结论是①②③④;故答案选D.【点睛】本题主要考查了平行线的判定与性质、余角和补角的性质,准确分析计算是解题的关键.6.C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得.【详解】A、,则与不是相反数,此项不符题意;B、与不是相反数,此项不符题意;C、,则与互为相反数,此项符合题意;D、,则与不是相反数,此项不符题意;故选:C.【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键.7.B【分析】根据平行线的性质可得∠FDC=∠F=30°,然后根据三角形外角的性质可得结果.【详解】解:如图,∵EF∥BC,∴∠FDC=∠F=30°,∴∠1=∠FDC+∠C=30°+45°=75°,故选:B.【点睛】本题主要考查了平行线的性质以及三角形外角的性质,熟知三角板各个角的度数是解本题的关键.8.B【分析】先求出四边形ABCD的周长为10,得到2021÷10的余数为1,由此即可解决问题.【详解】解:∵A(1,1),B(-1,1),C(-1,-2),D(1,-2),∴四边形ABCD的解析:B【分析】先求出四边形ABCD的周长为10,得到2021÷10的余数为1,由此即可解决问题.【详解】解:∵A(1,1),B(-1,1),C(-1,-2),D(1,-2),∴四边形ABCD的周长为10,2021÷10的余数为1,又∵AB=2,∴细线另一端所在位置的点在A处左面1个单位的位置,坐标为(0,1).故选:B.【点睛】本题考查规律型:点的坐标,解题的关键是理解题意,求出四边形ABCD的周长,属于中考常考题型.九、填空题9.36【解析】由题意得,y+6=0,x﹣2=0,解得x=2,y=﹣6,所以,yx=(﹣6)2=36.故答案是:36.解析:36【解析】由题意得,y+6=0,x﹣2=0,解得x=2,y=﹣6,所以,yx=(﹣6)2=36.故答案是:36.十、填空题10.【分析】由第四象限点的坐标符号是(+,-),可得,关于y轴对称的点,纵坐标相同,横坐标互为相反数,即可求解.【详解】解:因为在第四象限,则,所以,又因为关于y轴对称,x值相反,y值不变,解析:【分析】由第四象限点的坐标符号是(+,-),可得,关于y轴对称的点,纵坐标相同,横坐标互为相反数,即可求解.【详解】解:因为在第四象限,则,所以,又因为关于y轴对称,x值相反,y值不变,所以点A关于y轴对称点坐标为.故答案为.【点睛】本题考查点的坐标的意义和对称的特点.关键是掌握点的坐标的变化规律.十一、填空题11.4【分析】过点D作DF⊥AC,则由AD是△ABC的角平分线,DF⊥AC,DE⊥AB,可以得到DE=DF,可由三角形的面积的,,进而解得AC的长.【详解】过点D作DF⊥AC∵AD是△AB解析:4【分析】过点D作DF⊥AC,则由AD是△ABC的角平分线,DF⊥AC,DE⊥AB,可以得到DE=DF,可由三角形的面积的,,进而解得AC的长.【详解】过点D作DF⊥AC∵AD是△ABC的角平分线,DF⊥AC,DE⊥AB,∴DE=DF,又三角形的面积的,即,解得AC=4【点睛】主要考查了角平分线的性质,三角形的面积,掌握角平分线的性质及三角形的面积是解题的关键.十二、填空题12.45°【分析】根据平行线的性质可得∠ECD=∠AEC,∠BFD=∠ECD,等量代换即可求出∠BFD.【详解】解:∵AB∥CD,∴∠ECD=∠AEC,∵CE∥BF,∴∠BFD=∠ECD,解析:45°【分析】根据平行线的性质可得∠ECD=∠AEC,∠BFD=∠ECD,等量代换即可求出∠BFD.【详解】解:∵AB∥CD,∴∠ECD=∠AEC,∵CE∥BF,∴∠BFD=∠ECD,∴∠BFD=∠AEC,∵∠AEC=45°,∴∠BFD=45°.故答案为:45°.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题关键.十三、填空题13.70【分析】由题意易图可得,由折叠的性质可得,然后问题可求解.【详解】解:由长方形可得:,∵,∴,由折叠可得,∴;故答案为70.【点睛】本题主要考查平行线的性质及折叠的性质,熟解析:70【分析】由题意易图可得,由折叠的性质可得,然后问题可求解.【详解】解:由长方形可得:,∵,∴,由折叠可得,∴;故答案为70.【点睛】本题主要考查平行线的性质及折叠的性质,熟练掌握平行线的性质及折叠的性质是解题的关键.十四、填空题14.101【分析】根据“”的定义进行运算即可求解.【详解】解:====101.故答案为:101.【点睛】本题考查了新定义运算,理解新定义的法则是解题关键.解析:101【分析】根据“”的定义进行运算即可求解.【详解】解:====101.故答案为:101.【点睛】本题考查了新定义运算,理解新定义的法则是解题关键.十五、填空题15.(-2,6)或(-2,0).【分析】根据平行于y轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案.【详解】解:由点P(-2,3),PA∥y轴,PA=3,得在P点解析:(-2,6)或(-2,0).【分析】根据平行于y轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案.【详解】解:由点P(-2,3),PA∥y轴,PA=3,得在P点上方的A点坐标(-2,6),在P点下方的A点坐标(-2,0),故答案为:(-2,6)或(-2,0).【点睛】本题考查了点的坐标,掌握平行于y轴的直线上点的横坐标相等是解题关键,注意到一点距离相等的点有两个,以防遗漏.十六、填空题16.【分析】根据点的坐标、坐标的平移寻找规律即可求解.【详解】解:因为P1(1,1),P2(-2,1),P3(2,2),P4(-3,2),P5(3,3),P6(-4,3),P7(4,解析:【分析】根据点的坐标、坐标的平移寻找规律即可求解.【详解】解:因为P1(1,1),P2(-2,1),P3(2,2),P4(-3,2),P5(3,3),P6(-4,3),P7(4,4),P8(-5,4),…P2n-1(n,n),P2n(-n-1,n)(n为正整数),所以2n=2020,∴n=1010,所以P2020(-1011,1010),故答案为(-1011,1010).【点睛】本题考查了点的坐标、坐标的平移,解决本题的关键是寻找点的变化规律.十七、解答题17.(1);(2)【分析】(1)根据实数的运算法则直接计算即可,(2)利用立方根的含义求解再求解即可.【详解】(1)原式=(2)解:【点睛】本题考查的是实数的运算,求一个数的立方根解析:(1);(2)【分析】(1)根据实数的运算法则直接计算即可,(2)利用立方根的含义求解再求解即可.【详解】(1)原式=(2)解:【点睛】本题考查的是实数的运算,求一个数的立方根,掌握求解的方法是解题关键.十八、解答题18.(1);(2)【分析】(1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解;(2)方程整理后,将一个数开立方后,只得到一个解.【详解】解:(1)移项得,,解析:(1);(2)【分析】(1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解;(2)方程整理后,将一个数开立方后,只得到一个解.【详解】解:(1)移项得,,开方得,;(2)移项得,,合并同类项得,,开立方得,.【点睛】此题考查了立方根,以及平方根,熟练掌握各自的性质是解题关键.十九、解答题19.两直线平行,同位角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补【分析】根据平行线的性质与判定进行证明即可得到答案.【详解】证明:∵(已知)∴(两直线平行,同位角相等)解析:两直线平行,同位角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补【分析】根据平行线的性质与判定进行证明即可得到答案.【详解】证明:∵(已知)∴(两直线平行,同位角相等)又∵(已知)∴(等量代换)∴(同位角相等,两直线平行)∴.(两直线平行,同旁内角互补)【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.二十、解答题20.(1),;(2)见解析;(3)向右5个单位,再向上5个单位【分析】(1)观察平面直角坐标系得:公交车站在轴负半轴距离坐标原点1个单位;宠物店在第四象限内,距离轴2个单位,距离轴3个单位,即解析:(1),;(2)见解析;(3)向右5个单位,再向上5个单位【分析】(1)观察平面直角坐标系得:公交车站在轴负半轴距离坐标原点1个单位;宠物店在第四象限内,距离轴2个单位,距离轴3个单位,即可求解;(2)公园在第二象限内,距离轴2个单位,距离轴3个单位;书店在第一象限内,距离轴1个单位,距离轴1个单位;即可解答;(3)将医院的位置向右5个单位,再向上5个单位得到人寿保险公司的位置,即可.【详解】解:(1)观察平面直角坐标系得:公交车站在轴负半轴距离坐标原点1个单位,故公交车站的坐标是;宠物店在第四象限内,距离轴2个单位,距离轴3个单位,故宠物店的坐标是;(2)∵公园,书店∴公园在第二象限内,距离轴2个单位,距离轴3个单位;书店在第一象限内,距离轴1个单位,距离轴1个单位;位置如图所示:(3))将医院的位置向右5个单位,再向上5个单位得到人寿保险公司的位置.【点睛】本题主要考查了平面直角坐标系,用坐标来表示点的位置,根据位置写出点的坐标,熟练掌握平面直角坐标系内每个象限内点的坐标的特征是解题的关键.二十一、解答题21..【分析】根据可得,即可得到的整数部分是3,小数部分是,即可求解.【详解】解:∵,∴,∴的整数部分是3,则,的小数部分是,则,∴,∴9的平方根为.【点睛】本题考查实数的估算、实数解析:.【分析】根据可得,即可得到的整数部分是3,小数部分是,即可求解.【详解】解:∵,∴,∴的整数部分是3,则,的小数部分是,则,∴,∴9的平方根为.【点睛】本题考查实数的估算、实数的运算、平方根的定义,掌握实数估算的方法是解题的关键.二十二、解答题22.(1);(2)不同意,理由见解析【分析】(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值;(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个解析:(1);(2)不同意,理由见解析【分析】(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值;(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个正方形边长的和,并与3比较即可解答.【详解】解:(1)设正方形边长为,则,由算术平方根的意义可知,所以正方形的边长是.(2)不同意.因为:两个小正方形的面积分别为和,则它们的边长分别为和.,即两个正方形边长的和约为,所以,即两个正方形边长的和大于长方形的长,所以不能在长方形纸片上截出两个完整的面积分别为和的正方形纸片.【点睛】本题考查了算术平方根的应用,解题的关键是读懂题意并熟知算术平方根的概念.二十三、解答题23.(1);(2)的值为40°;(3).【分析】(1)过点O作OG∥AB,可得AB∥OG∥CD,利用平行线的性质可求解;(2)过点M作MK∥AB,过点N作NH∥CD,由角平分线的定义可设∠BEM解析:(1);(2)的值为40°;(3).【分析】(1)过点O作OG∥AB,可得AB∥OG∥CD,利用平行线的性质可求解;(2)过点M作MK∥AB,过点N作NH∥CD,由角平分线的定义可设∠BEM=∠OEM=x,∠CFN=∠OFN=y,由∠BEO+∠DFO=260°可求x-y=40°,进而求解;(3)设直线FK与EG交于点H,FK与AB交于点K,根据平行线的性质即三角形外角的性质及,可得,结合,可得即可得关于n的方程,计算可求解n值.【详解】证明:过点O作OG∥AB,∵AB∥CD,∴AB∥OG∥CD,∴∴即∵∠EOF=100°,∴∠;(2)解:过点M作MK∥AB,过点N作NH∥CD,∵EM平分∠BEO,FN平分∠CFO,设∵∴∴x-y=40°,∵MK∥AB,NH∥CD,AB∥CD,∴AB∥MK∥NH∥CD,∴∴=x-y=40°,故的值为40°;(3)如图,设直线FK与EG交于点H,FK与AB交于点K,∵AB∥CD,∴∵∴∵∴即∵FK在∠DFO内,∴,∵∴∴即∴解得.经检验,符合题意,故答案为:.【点睛】本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键.二十四、解答题24.(1)①②;(2);(3)不变,,理由见解析;(4)【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的解析:(1)①②;(2);(3)不变,,理由见解析;(4)【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的定义可以证明∠CBD=∠ABN,即可求出结果;(3)不变,∠APB:∠ADB=2:1,证∠APB=∠PBN,∠PBN=2∠DBN,即可推出结论;(4)可先证明∠ABC=∠DBN,由(1)∠ABN=116°,可推出∠CBD=58°,所以∠ABC+∠DBN=58°,则可求出∠ABC的度数.【详解】解:(1)①∵AM//BN,∠A=64°,∴∠ABN=180°﹣∠A=116°,故答案为:116°;②∵AM//BN,∴∠ACB=∠CBN,故答案为:CBN;(2)∵AM//BN,∴∠ABN+∠A=180°,∴∠ABN=180°﹣64°=116°,∴∠ABP+∠PBN=116°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=116°,∴∠CBD=∠CBP+∠DBP=58°;(3)不变,∠APB:∠ADB=2:1,∵AM//BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025浙江绍兴市中等专业学校合同制人员(融媒体工作技术员)招聘1人备考核心题库及答案解析
- 2025西安高新区第九初级中学招聘教师参考考试题库及答案解析
- 2025年商丘柘城县消防救援大队招录政府专职消防员53名考试核心题库及答案解析
- 2025中国煤科煤矿灾害防控全国重点实验室研发岗位招聘6人考试重点题库及答案解析
- 2025年西安交通大学第一附属医院医学影像科招聘考试重点试题及答案解析
- 2025年西安旅游股份有限公司招聘笔试重点试题及答案解析
- 2025辽宁建筑职业学院赴高校现场招聘10人模拟笔试试题及答案解析
- 2025广西百色市西林县消防救援大队政府专职消防员招聘15人考试重点题库及答案解析
- 2025江苏南京鼓楼医院人力资源服务中心招聘4人考试核心题库及答案解析
- 2026中证中小投资者服务中心招聘考试重点试题及答案解析
- 老年人糖尿病课件
- 航空附件相关知识培训课件
- 年末安全生产知识培训课件
- 南网综合能源公开招聘笔试题库2025
- 汉语水平考试HSK四级真题4-真题-无答案
- 银行金融消费者权益保护工作测试题及答案
- 2025年c2安全员考试题库
- GB/T 22080-2025网络安全技术信息安全管理体系要求
- 监理公司检查管理制度
- 国家开放大学《管理英语3》期末机考题库
- 氯碱行业企业安全生产隐患排查治理体系实施指南
评论
0/150
提交评论