版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、中考几何压轴题1.问题发现:(1)如图1,在Rt△ABC中,∠BAC=30°,∠ABC=90°,将线段AC绕点A逆时针旋转,旋转角α=2∠BAC,∠BCD的度数是;线段BD,AC之间的数量关系是.类比探究:(2)在Rt△ABC中,∠BAC=45°,∠ABC=90°,将线段AC绕点A逆时针旋转,旋转角α=2∠BAC,请问(1)中的结论还成立吗?;拓展延伸:(3)如图3,在Rt△ABC中,AB=2,AC=4,∠BDC=90°,若点P满足PB=PC,∠BPC=90°,请直接写出线段AP的长度.2.(1)如图1,在正的外角内引射线,作点C关于的对称点E(点E在内),连接,、分别交于点F,G.则_______.(2)类比探究:如图2,把上题中的“正”改为“正方形”,其余条件不变,请求出的度数;通过以上两例探索,请写出一个关于与的数量关系的正确结论:_________________;(3)拓展延伸:如图3,若以正方形的顶点O为原点,顶点A,D分别在x轴,y轴上,点A的坐标为,设正方形的中心为P,平面上一点F到P的距离为.①直接写出的度数;②当时,求点F的坐标;并探索是否有最大值?如果有,请求出;如果没有,请说明理由.3.《函数的图象与性质》拓展学习展示:(问题)如图①,在平面直角坐标系中,抛物线:与轴相交于,两点,与轴交于点,则______,______.(操作)将图①中抛物线沿方向平移长度的距离得到拋物线,在轴左侧的部分与在轴右侧的部分组成的新图象记为,如图②.请直接写出图象对应的函数解析式.(探究)在图②中,过点作直线平行于轴,与图象交于,两点,如图③.求出图象在直线上方的部分对应的函数随的增大而增大时的取值范围.(应用)是抛物线对称轴上一个动点,当是直角三角形时,直接写出点的坐标.4.(1)问题发现如图1,△ABC与△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°,直线BD,CE交于点F,直线BD,AC交于点G.则线段BD和CE的数量关系是,位置关系是;(2)类比探究如图2,在△ABC和△ADE中,∠ABC=∠ADE=α,∠ACB=∠AED=β,直线BD,CE交于点F,AC与BD相交于点G.若AB=kAC,试判断线段BD和CE的数量关系以及直线BD和CE相交所成的较小角的度数,并说明理由;(3)拓展延伸如图3,在平面直角坐标系中,点M的坐标为(3.0),点N为y轴上一动点,连接MN.将线段MN绕点M逆时针旋转90得到线段MP,连接NP,OP.请直接写出线段OP长度的最小值及此时点N的坐标.5.(问题情境)(1)如图1,在矩形ABCD中,将矩形沿AC折叠,点B落在点E处,设AD与CE相交于点F,那么AC与DE的位置关系为.(类比探究)(2)如图2,若四边形ABCD为平行四边形,上述“问题情境”中的条件不变,①猜想AC与DE的位置关系,并证明你的结论;②当∠B与∠ACB满足什么数量关系时,△ABC∽△FEA?请说明理由;(拓展应用)(3)如图3,▱ABCD中,∠B=60°,AB=6,上述“问题情境”中的条件不变,当△AEC是直角三角形时,请直接写出DE的长为.6.在中,于点,点为射线上任一点(点除外)连接,将线段绕点顺时针方向旋转,,得到,连接.(1)(观察发现)如图1,当,且时,BP与的数量关系是___________,与的位置关系是___________.(2)(猜想证明)如图2,当,且时,(1)中的结论是否成立?若成立,请予以证明;若不成立,请说明理由.(请选择图2,图3中的一种情况予以证明或说理)(3)(拓展探究)在(2)的条件下,若,,请直接写出的长.7.在与中,且,点D始终在线段AB上(不与A、B重合).(1)问题发现:如图1,若度,的度数______,______;(2)类比探究:如图2,若度,试求的度数和的值;(3)拓展应用:在(2)的条件下,M为DE的中点,当时,BM的最小值为多少?直接写出答案.8.综合与实践数学活动课上,老师让同学们结合下述情境,提出一个数学问题:如图1,四边形ABCD是正方形,四边形BEDF是矩形.探究展示:“兴趣小组”提出的问题是:“如图2,连接CE.求证:AE⊥CE.”并展示了如下的证明方法:证明:如图3,分别连接AC,BD,EF,AF.设AC与BD相交于点O.∵四边形ABCD是正方形,∴OA=OC=AC,OB=OD=BD,且AC=BD.又∵四边形BEDF是矩形,∴EF经过点O,∴OE=OF=EF,且EF=BD.∴OE=OF,OA=OC.∴四边形AECF是平行四边形.(依据1)∵AC=BD,EF=BD,∴AC=EF.∴四边形AECF是矩形.(依据2)∴∠CEA=90°,即AE⊥CE.反思交流:(1)上述证明过程中“依据1”“依据2”分别是什么?拓展再探:(2)“创新小组”受到“兴趣小组”的启发,提出的问题是:“如图4,分别延长AE,FB交于点P,求证:EB=PB.”请你帮助他们写出该问题的证明过程.(3)“智慧小组”提出的问题是:若∠BAP=30°,AE=,求正方形ABCD的面积.请你解决“智慧小组”提出的问题.9.如图,已知和均为等腰三角形,AC=BC,DE=AE,将这两个三角形放置在一起.(1)问题发现:如图①,当时,点B、D、E在同一直线上,连接CE,则=°,线段BD、CE之间的数量关系是;(2)拓展探究:如图②,当时,点B、D、E在同一直线上,连接CE,请判断的度数及线段BD、CE之间的数量关系,并说明理由;(3)解决问题:如图③,,,AE=2,连接CE、BD,在绕点A旋转的过程中,当时,请直接写出EC的长.10.(问题探究)课堂上老师提出了这样的问题:“如图①,在中,,点是边上的一点,,求的长”.某同学做了如下的思考:如图②,过点作,交的延长线于点,进而求解,请回答下列问题:(1)___________度;(2)求的长.(拓展应用)如图③,在四边形中,,对角线相交于点,且,,则的长为_____________.11.如图1,已知直角三角形,,,点是边上一点,过作于点,连接,点是中点,连接,.(1)发现问题:线段,之间的数量关系为______;的度数为______;(2)拓展与探究:若将绕点按顺时针方向旋转角,如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若绕点旋转的过程中,当点落到边上时,边上另有一点,,,连接,请直接写出的长度.12.探究:如图1和图2,四边形ABCD中,已知AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.(1)①如图1,若∠B、∠ADC都是直角,把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,直接写出线段BE、DF和EF之间的数量关系;②如图2,若∠B、∠D都不是直角,但满足∠B+∠D=180°,线段BE、DF和EF之间的结论是否仍然成立,若成立,请写出证明过程;若不成立,请说明理由.(2)拓展:如图3,在△ABC中,∠BAC=90°,AB=AC=2.点D、E均在边BC边上,且∠DAE=45°,若BD=1,求DE的长.13.定义:有一组邻边相等且对角互补的四边形叫做等补四边形.(问题理解)(1)如图1,点A、B、C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD、CD.求证:四边形ABCD是等补四边形;(拓展探究)(2)如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由;(升华运用)(3)如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F.若CD=6,DF=2,求AF的长.14.爱好思考的小明在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线相互垂直的三角形“中垂三角形”,如图(1)、图(2)、图(3)中,AM、BN是△ABC的中线,AM⊥BN于点P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.(特例研究)(1)如图1,当tan∠PAB=1,c=4时,a=b=;(归纳证明)(2)请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图2证明你的结论;(拓展证明)(3)如图4,▱ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF交BE相较于点G,AD=3,AB=3,求AF的长.15.综合与实践问题情境:△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D,点E是射线AD上的一个动点(不与点A重合)将线段AE绕点A顺时针旋转90°得到线段AF,连接CF交线段AB于点G,交AD于点H、连接EG.特例分析:(1)如图1,当点E与点D重合时,“智敏”小组提出如下问题,请你解答:①求证:AF=CD;②用等式表示线段CG与EG之间的数量关系为:_______;拓展探究:(2)如图2,当点E在线段AD的延长线上,且DE=AD时,“博睿”小组发现CF=2EG.请你证明;(3)如图3,当点E在线段AD的延长线上,且AE=AB时,的值为_______;推广应用:(4)当点E在射线AD上运动时,,则的值为______用含m.n的式子表示).16.(1)问题发现如图1,ABC是等边三角形,点D,E分别在边BC,AC上,若∠ADE=60°,则AB,CE,BD,DC之间的数量关系是.(2)拓展探究如图2,ABC是等腰三角形,AB=AC,∠B=α,点D,E分别在边BC,AC上.若∠ADE=α,则(1)中的结论是否仍然成立?请说明理由.(3)解决问题如图3,在ABC中,∠B=30°,AB=AC=4cm,点P从点A出发,以1cm/s的速度沿A→B方向勾速运动,同时点M从点B出发,以cm/s的速度沿B→C方向匀速运动,当其中一个点运动至终点时,另一个点随之停止运动,连接PM,在PM右侧作∠PMG=30°,该角的另一边交射线CA于点G,连接PC.设运动时间为t(s),当△APG为等腰三角形时,直接写出t的值.17.如图1所示,边长为4的正方形与边长为的正方形的顶点重合,点在对角线上.(问题发现)如图1所示,与的数量关系为________;(类比探究)如图2所示,将正方形绕点旋转,旋转角为,请问此时上述结论是否还成立?如成立写出推理过程,如不成立,说明理由;(拓展延伸)若点为的中点,且在正方形的旋转过程中,有点、、在一条直线上,直接写出此时线段的长度为________18.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.19.定义:如图1,点M、N把线段AB分割成AM、MN和BN,若以AM、MN、BN为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股点.已知点M、N是线段AB的勾股点,若AM=1,MN=2,则BN=.(1)(类比探究)如图2,DE是△ABC的中位线,M、N是AB边的勾股点(AM<MN<NB),连接CM、CN分别交DE于点G、H.求证:G、H是线段DE的勾股点.(2)(知识迁移)如图3,C,D是线段AB的勾股点,以CD为直径画⊙O,P在⊙O上,AC=CP,连结PA,PB,若∠A=2∠B,求∠B的度数.(3)(拓展应用)如图4,点P(a,b)是反比例函数(x>0)上的动点,直线与坐标轴分别交于A、B两点,过点P分别向x、y轴作垂线,垂足为C、D,且交线段AB于E、F.证明:E、F是线段AB的勾股点.20.已知:,过平面内一点分别向、、画垂线,垂足分别为、、.(问题引入)如图①,当点在射线上时,求证:.(类比探究)(1)如图②,当点在内部,点在射线上时,求证:.(2)当点在内部,点在射线的反向延长线上时,在图③中画出示意图,并直接写出线段、、之间的数量关系.(知识拓展)如图④,、、是的三条弦,都经过圆内一点,且.判断与的数量关系,并证明你的结论.【参考答案】***试卷处理标记,请不要删除一、中考几何压轴题1.(1)120°,BD=AC;(2)不成立,理由详见解析;(3)或.【分析】(1)过点D作DE⊥BC,通过线段之间的转换得到AC与DE之间的关系,在直角三角形BDE中通过BD与DE的关系,得到BD解析:(1)120°,BD=AC;(2)不成立,理由详见解析;(3)或.【分析】(1)过点D作DE⊥BC,通过线段之间的转换得到AC与DE之间的关系,在直角三角形BDE中通过BD与DE的关系,得到BD,AC之间的关系.(2)类比(1)的解法,找线段之间的关系.(3)分情况进行讨论,画出符合题意得图形进行求解.【详解】解:(1)如图3,过点D作DE⊥BC,垂足为E,设BC=m.在Rt△ABC中,∠BAC=30°,由BC=AB·tan30°,BC=AC·sin30°,得AC=2m,BC=m,∵AC=AD,∠CAD=2×30°=60°,∴△ACD为等边三角形,∴∠ACD=60°,CD=AC=2m,∴∠BCD=60°×2=120°,在Rt△DEC中,∠DCE=180°-120°=60°,DC=2m,∴CE=CD·cos60°=m,DE=CE·tan60°=m,∴在Rt△BED中,BD==,∴==,故BD=AC.故答案为:120°;BD=AC.(2)不成立,理由如下:设BC=n,在Rt△ABC中,∠BAC=45°,∠ABC=90°,∴BC=AB=m,AC=BC=n,∵AC=AD,∠CAD=90°,∴△CAD为等腰直角三角形,∴∠ACD=45°,CD=AC=2n,∴∠BCD=2×45°=90°,在Rt△BCD中,BD==,∴==,,故BD=AC.答案为:90°;BD=AC.故结论不成立.(3)AP的长为或.;解答如下:∵PB=PC,∴点P在线段BC的垂直平分线上,∵∠BAC=∠BCP=90°,故A、B、C、P四点共圆,以线段BC的中点为圆心构造⊙O,如图4,图5,分类讨论如下:①当点P在直线BC上方时,如图4,作PM⊥AC,垂足为M,设PM=x.∵PB=PC,∠BPC=90°,∴△PBC为等腰直角三角形,∴∠PBC=45°,∵∠PAC=∠PBC=45°,∴△AMP为等腰直角三角形,∴AM=PM=x,AP=PM=x,在Rt△ABC中,AB=2,AC=4,∴BC==,∴PC=BC·sin45°=,在Rt△PMC中,∵∠PMC=90°,PM=x,PC=,CM=4-x,∴,解得:,(舍),∴AP==;②当点P在直线BC的下方时,如图5,作PN⊥AB的延长线,垂足为N,设PN=y.同上可得PB=,△PAN为等腰三角形,∴AN=PN=y,∴BN=y-2,在Rt△PNB中,∵∠PNB=90°,PN=y,BN=y-2,PB=,∴,解得:,(舍),∴AP==.故AP的长度为:或.【点睛】本题考查的是等边三角形的判定和性质、勾股定理、以及旋转变换的性质,掌握类比思想解题是解决本题的关键.2.(1);(2),理由见解析;(3)①;②有,【分析】(1)证明∠1=∠2,∠3=∠4,∠1+∠2+60°+∠3+∠4=180°得∠1+∠3=60°,进一步可得结论;(2)连接,证明,再进一步解析:(1);(2),理由见解析;(3)①;②有,【分析】(1)证明∠1=∠2,∠3=∠4,∠1+∠2+60°+∠3+∠4=180°得∠1+∠3=60°,进一步可得结论;(2)连接,证明,再进一步证明得,故可得结论;(3)①由题意可知,点F在以P为圆心,为半径的圆上,由圆周角定理可得结论;②设,根据三角形面积公式求出y的值,在中,,根据勾股定理得,列出方程求出x的值即可得点F的坐标,当轴时,面积最大,求值即可.【详解】解:(1)如图1中,∵点E是点C关于AM的对称点,∴∠AGE=90°,AE=AC,∠1=∠2.∵正△ABC中,∠BAC=60°,AB=AC,∴AE=AB,得∠3=∠4.在△ABE中,∠1+∠2+60°+∠3+∠4=180°,∴∠1+∠2+∠3+∠4=120°,∴∠1+∠3=60°.在△AEG中,∠FEG+∠3+∠1=90°,∴∠FEG=30°.故答案为:;(2)连接∵C,E关于对称∴∴∴;在正方形中,∴,∴;在中,;即∵∴∴∴结论:(3)①由题意可知,点F在以P为圆心,为半径的圆上,如图,连接,则∴故答案为:②设则即,由题意得,∴由题意可知,点F在以P为圆心,为半径的圆上;过点P作轴,过点F作轴,则在中,,根据勾股定理得即解得故或,当轴时,面积最大,此时【点睛】本题属于四边形综合题,考查了等腰三角形的性质,全等三角形的判定和性质,解直角三角形,圆周角定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.3.【问题】,1;【操作】当时,,当时,;【探究】或;【应用】点的坐标为:或【分析】问题:即可求解;操作:抛物线G1沿BC方向平移BC长度的距离得到抛物线G2,相当于抛物线向左平移3个单位,向上平解析:【问题】,1;【操作】当时,,当时,;【探究】或;【应用】点的坐标为:或【分析】问题:即可求解;操作:抛物线G1沿BC方向平移BC长度的距离得到抛物线G2,相当于抛物线向左平移3个单位,向上平移个单位,即可求解;探究:将点C的坐标代入两个函数表达式,求出G1、G2的顶点坐标,即可求解;应用:证明∠EPN=∠MDP,利用tan∠EPN=tan∠MDP,即可求解.【详解】解:问题:,解得:,,故答案为:,1;操作:抛物线沿方向平移长度的距离得到抛物线,相当于抛物线向左平移3个单位,向上平移个单位,:,:,当时,,当时,;探究:点的坐标为.当时,,解得:,,∴,当时,,解得:,,∴,∵,,∴抛物线的顶点为,抛物线的顶点为,∴或时,函数随的增大而增大;应用:如图,过点作轴的平行线交过点与轴的垂线于点,交过点与轴的垂直的直线于点,设点,则,,,,∵,,∴,∴,即,即,解得:,故点的坐标为:或.【点睛】本题考查的是二次函数综合运用,涉及解直角三角形、图形的平移等,具有一定的综合性,关键在于根据题意作出图形进行解答.4.(1)BD=CE,BD⊥CE,理由见详解;(2)AB=kAC,180°-α-β;(3)N(0,3),OP的最小值为3【分析】(1)先证明△ABD≌△ACE,从而得BD=CE,∠ABD=∠ACE解析:(1)BD=CE,BD⊥CE,理由见详解;(2)AB=kAC,180°-α-β;(3)N(0,3),OP的最小值为3【分析】(1)先证明△ABD≌△ACE,从而得BD=CE,∠ABD=∠ACE,结合∠AGB=∠FGC,即可得到结论;(2)先证明ABCADE,从而得,结合∠BAD=∠CAE,可得BADCAE,进而即可得到结论;(3)把OPM绕点M顺时针旋转90°得到(与N重合),则,,(3,3),,进而即可求解.【详解】解:(1)BD=CE,BD⊥CE,∵△ABC和△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∵∠BAD=∠BAC−∠DAC,∠CAE=∠DAE−∠DAC∴∠BAD=∠CAE,在△ABD和△ACE中,∵,∴△ABD≌△ACE,∴BD=CE,∠ABD=∠ACE,∵∠AGB=∠FGC,∴∠CFG=∠BAG=90°,即BD⊥CE,故答案是:BD=CE,BD⊥CE;(2)∵∠ABC=∠ADE=α,∠ACB=∠AED=β,∴ABCADE,∴,∵∠ABC=∠ADE=α,∠ACB=∠AED=β,∴∠BAC=∠DAE,∴∠BAD=∠CAE,∴BADCAE,∴∠ABD=∠ACE,又∵∠AGB=∠FGC,∴∠BFC=∠BAC=180°-∠ABC-∠ACB=180°-α-β,∴AB=kAC,直线BD和CE相交所成的较小角的度数为:180°-α-β;(3)由题意得:MN=MP,∠NMP=90°,把OPM绕点M顺时针旋转90°得到(与N重合),则,,∵点M的坐标为(3,0),∴(3,3)∵OPM,∴,即线段OP长度最小时,的长度最小,∴当⊥y轴时,的长度最小,此时(0,3),∴N(0,3),OP的最小值为3.【点睛】本题主要考查全等三角形的判定和性质,相似三角形的判定和性质,旋转的性质,通过旋转变换,构造相似三角形或全等三角形,是解题的关键.5.(1)AC//DE;(2)①AC//DE;②∠B+3∠ACB=180°,理由见解析;(3)或.【分析】【问题情境】AC//DE,根据矩形的性质和折叠的性质得出∠EDA=∠3即可;【类比探究】①解析:(1)AC//DE;(2)①AC//DE;②∠B+3∠ACB=180°,理由见解析;(3)或.【分析】【问题情境】AC//DE,根据矩形的性质和折叠的性质得出∠EDA=∠3即可;【类比探究】①AC//DE,根据平行四边形的性质和折叠的性质得出∠EDA=∠3即可;②由①得∠DAC=∠ACB=∠ACE,根据三角形外角的性质可得∠AFE=2∠ACB,若△ABC∽△FEA,根据相似三角形的性质可得∠BAC=∠EFA=2∠ACB,∠B=∠AEC,根据平行线的性质可得∠B+∠BAD=180°,即∠B+∠BAC+∠DAC=180°,可得出∠B+3∠ACB=180°;【拓展应用】分两种情形:①∠EAC=90°时,如图3﹣1.②如图2,当∠ACE=90°时,分别求解即可.【详解】【问题情境】如图①中,∵矩形ABCD沿AC折叠,∴∠1=∠2,∵AD//BC,∴∠1=∠3,∴∠2=∠3,∴AF=CF,∵AD=BC,BC=CE,∴AD=CE,∴AD﹣AF=CE﹣CF,即EF=DF,∴∠FED=∠FDE,∵∠AFC=∠EFD,∴∠3=∠ADE,∴AC//DE.故答案为:AC//DE;【类比探究】①如图②中,∵沿AC折叠,∴∠ACB=∠ACE,BC=CE,∵AD//BC,∴∠DAC=∠ACB,∴∠DAC=∠ACE,∴FA=FC,∵AD=BC,BC=CE,∴AD=CE,∴AD﹣FA=CE﹣FC,即EF=DF,∴∠FED=∠FDE,∵∠AFC=∠EFD,∴∠DAC=∠ADE,∴AC//DE,②由①得∠DAC=∠ACB=∠ACE,∴∠AFE=∠DAC+∠ACE=2∠ACB,若△ABC∽△FEA,则∠BAC=∠EFA=2∠ACB,∠B=∠AEC,∵AD//BC,∴∠B+∠BAD=180°,即∠B+∠BAC+∠DAC=180°,∵∠BAC=2∠ACB,∠DAC=∠ACB,∴∠B+3∠ACB=180°,∴当∠B+3∠ACB=180°时,△ABC∽△FEA;【拓展应用】①∠EAC=90°时,如图,∵沿AC折叠,∴AE=AB=6,∠AEC=∠ABC=60°,∠BAC=∠EAC=90°,∴B、A、E三点共线,∵四边形ABCD为平行四边形,∴AB//CD,即AE//CD,AB=CD,∴AE//CD,AE=CD,∴四边形ACDE为平行四边形,∴DE=AC,在Rt△BAC中,AC=AB•tan∠B=,②如图,当∠ACE=90°时,∵沿AC折叠,∴AE=AB=6,∠ACE=∠ABC=60°,∠BCA=∠ECA=90°,∴B、C、E三点共线,∵BC=CE=AD,∵AD//BE,∠ECA=90°,∴四边形ACED为矩形,∴DE=AC,在Rt△ABC中,AC=AB•sin∠B=,综上可知,当△AEC是直角三角形时,DE的长为或.故答案为:或.【点睛】本题属于相似形综合题,考查了矩形的性质,相似三角形的判定和性质,解直角三角形,翻折变换等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题.6.(1),;(2)成立,不成立,与的关系为,见解析;(3)2或14【分析】(1)连接AE,证明△ABC、△APE为等边三角形,再证明,根据全等三角形的性质可得BP=CE,,再求得,即可得,所有.解析:(1),;(2)成立,不成立,与的关系为,见解析;(3)2或14【分析】(1)连接AE,证明△ABC、△APE为等边三角形,再证明,根据全等三角形的性质可得BP=CE,,再求得,即可得,所有.(2)成立,不成立,与的关系为.选图2证明:连接,易证,根据相似三角形的性质可得,,根据等腰直角三角形的性质可得,由此可得,结论可证;选图3证明,类比图2的证明方法即可;(3)分图2和图3两种情况求CE的长即可.【详解】(1)如图,连接AE,∵,且,∴△ABC为等边三角形,∴,AB=AC,∵,且,∴△APE为等边三角形,∴,AP=AE,∴,∴;在△BAP和△CAE中,,∴,∴BP=CE,,∵,,,∴∠ABP=30°,∴,∴,∴.故答案为:,.(2)成立,不成立,与的关系为.理由如下:选图2证明:连接,由题意可知:、均为等腰直角三角形,∴,,∴,即;又∵,∴,∴,,∵,,∴,∴,∴,∴,.选图3证明:理由如下:连接,由题意可知:、均为等腰直角三角形,∴,,∴,即,又∵,∴,∴,,∵,,∴,∴,∴,∴,;(3)或14.如图,∵,∴,∵,∴在中,,∴,由(2)知:,∴;如图,同理可得,∴,∴.综上:的长为2或14.【点睛】本题是三角形综合题,考查了全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等知识,熟练运用相关知识是解决问题的关键.7.(1)90度;1;(2)的度数为90度,的值为;(3)BM的最小值为1.【分析】(1)度,利用SAS证明,即可得出,的值为1;(2)度,证明,即可得出,;(3)当CD最小时,即CD垂直于AB解析:(1)90度;1;(2)的度数为90度,的值为;(3)BM的最小值为1.【分析】(1)度,利用SAS证明,即可得出,的值为1;(2)度,证明,即可得出,;(3)当CD最小时,即CD垂直于AB时,CD最小,此时DE最小,而BM是直角三角形DBE斜边上的中线,直角三角形斜边上的中线等于斜边的一半.【详解】(1)①∵∴∴∵,∴∴,∴∴,∴,的值为1;(2)在中,,令,则,同理令,∴,∴①∵即∴②有①②得∴,∴(3)在中,,∴,当CD最小时,即CD垂直于AB时,CD最小,此时DE最小,而,∴,而BM是直角三角形DBE斜边上的中线,∴【点睛】本题涉及全等三角形的性质与判定、相似三角形的性质与判定、特殊的三角函数值和直角三角形的性质.是一个综合性比较强的题目,要熟练掌握各个知识点.8.(1)依据1:对角线互相平分的四边形是平行四边形,依据2:对角线相等的平行四边形是矩形;(2)见解析;(3)4【分析】(1)借助问题情景即可得出结论;(2)连接CE,先根据已证结论及正方形的性解析:(1)依据1:对角线互相平分的四边形是平行四边形,依据2:对角线相等的平行四边形是矩形;(2)见解析;(3)4【分析】(1)借助问题情景即可得出结论;(2)连接CE,先根据已证结论及正方形的性质得出AB=BC,∠1=∠4,再由矩形性质证得∠PBA=∠EBC,得出△PBA≌△EBC,即可得出结论;(3)过点B作BM⊥AP,垂足为M.结合(2)所得结论利用等腰直角三角形的性质可得BM=PM=ME,设BM=ME=x,则AM=x+-1.则根据三角函数解直角三角形求出x=1,再由直角三角形的性质求出正方形的边长,即可得出结果.【详解】解:(1)依据1:对角线互相平分的四边形是平行四边形.依据2:对角线相等的平行四边形是矩形.(2)证明:连接CE,由题意得,∠CEA=90°,∴∠1+∠2=180°-∠AEC=90°.∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC.∴∠3+∠4=180°-∠ABC=90°.∵∠2=∠3.∴∠1=∠4.∵四边形EBFD是矩形,∴∠EBF=90°.∴∠PBE=180°-∠EBF=90°.∴∠PBE=∠ABC.∴∠PBE+∠EBA=∠ABC+∠EBA.即∠PBA=∠EBC.∴△PBA≌△EBC.∴PB=EB.(3)解:过点B作BM⊥AP,垂足为M.由(2)可知,PB=BE,∠PBE=90°.∴BM=PM=ME.设BM=ME=x,则AM=x+-1.∵在Rt△ABM中,∠BAM=30°.∴AB=2BM,tan∠BAM=,解得x=1.∴AB=2,∴S正方形ABCD=2×2=4.【点睛】此题是四边形综合题,主要考查了正方形的性质,矩形的判定与性质,全等三角形的判定和性质等知识,熟练掌握特殊四边形、全等三角形及三角函数等相关知识点是解题的关键.9.(1);(2),理由见解析;(3)CE的长为2或4,理由见解析.【分析】(1)证明,得出CE=BD,,即可得出结论;(2)证明,得出,,即可得出结论;(3)先判断出,再求出:①当点E在点D解析:(1);(2),理由见解析;(3)CE的长为2或4,理由见解析.【分析】(1)证明,得出CE=BD,,即可得出结论;(2)证明,得出,,即可得出结论;(3)先判断出,再求出:①当点E在点D上方时,先判断出四边形APDE是矩形,求出AP=DP=AE=2,再根据勾股定理求出,BP=6,得出BD=4;②当点E在点D下方时,同①的方法得,AP=DP=AE=1,BP=6,进而得出BD=BP+DP=8,即可得出结论.【详解】解:(1)为等腰三角形,,∴是等边三角形,同理可得是等边三角形故答案为:.(2),理由如下:在等腰三角形ABC中,AC=BC,,,同理,,,,,,,,点B、D、E在同一条直线上:;(3)由(2)知,,,在中,,,①当点E在点D上方时,如图③,过点A作交BD的延长线于P,,,四边形APDE是矩形,,矩形APDE是正方形,,在中,根据勾股定理得,,,;②当点E在点D下方时,如图④同①的方法得,AP=DP=AE=2,BP=6,BD=BP+DP=8,,综上CE的长为2或4.【点睛】本题是几何变换的综合题,主要考查了旋转的性质,全等三角形的判定和定理,相似三角形的判定和性质,勾股定理,等边三角形的性质,判断出三角形ACE和三角形ABD相似是关键.10.【问题探究】(1);(2).【拓展应用】.【分析】问题探究:(1)由平行线的性质得出∠ACE+∠BAC=180°,即可得出结果;(2)由平行线的性质得出∠E=∠BAD=72°,证出AC=AE解析:【问题探究】(1);(2).【拓展应用】.【分析】问题探究:(1)由平行线的性质得出∠ACE+∠BAC=180°,即可得出结果;(2)由平行线的性质得出∠E=∠BAD=72°,证出AC=AE,由平行线证明△ABD∽△ECD,求出AD=2;ED=4,ED=2,得出AC=AE=AD+ED=6;
拓展应用:过点D作DF∥AB交AC于点F.证明△BAE∽△DFE,得出=2,得出AB=2DF,EF=AE=1,AF=AE+EF=3,证出AC=AD,在Rt△ADF中,求出DF=AF×tan∠CAD=,得出AC=AD=2DF=2,AB=2DF=2,得出AC=AB,在Rt△ABC中,求出BC=AB=2即可.【详解】解:(1)∵CE∥AB,∴∠ACE+∠BAC=180°,
∴∠ACE=180°-108°=72°;
故答案为:72;
(2)∵CE∥AB,
∴∠E=∠BAD=72°,
∴∠E=∠ACE,
∴AC=AE,
∵CE∥AB,
∴△ABD∽△ECD,
∴,∵BD=2CD,
∴=2,∴AD=2ED=4,
∴ED=2,
∴AC=AE=AD+ED=4+2=6;拓展应用:
:如图3中,过点D作DF∥AB交AC于点F.
∵AC⊥AB,∴∠BAC=90°,∵DF∥AB,
∴∠DFA=∠BAC=90°,
∵∠AEB=∠DEF,
∴△BAE∽△DFE,
∴=2,∴AB=2DF,EF=AE=1,AF=AE+EF=3,∵∠BAD=120°,
∴∠CAD=30°,
∴∠ACD=75°=∠ADC,
∴AC=AD,
在Rt△ADF中,∵∠CAD=30°,
∴DF=AF×tan∠CAD=3×,∴AC=AD=2DF=2,AB=2DF=2,∴AC=AB,
在Rt△ABC中,∵∠BAC=90°,
∴BC=AB=2;故答案为:2.【点睛】此题考查四边形综合题,相似三角形的判定与性质,直角三角形的性质,等腰三角形的判定,勾股定理,本题综合性强,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.11.(1),;(2)结论成立,理由见解析;(3).【分析】(1)先根据直角三角形斜边上的中线等于斜边的一半可得,再根据等腰三角形的性质、三角形的外角性质即可求出的度数;(2)如图(见解析),先根据解析:(1),;(2)结论成立,理由见解析;(3).【分析】(1)先根据直角三角形斜边上的中线等于斜边的一半可得,再根据等腰三角形的性质、三角形的外角性质即可求出的度数;(2)如图(见解析),先根据直角三角形斜边上的中线等于斜边的一半、三角形中位线定理可得,再根据等腰三角形的性质、平行线的性质、三角形的外角性质可得,然后根据三角形全等的判定定理与性质可得,最后根据平行线的性质、等边三角形的判定与性质、角的和差即可求出的度数;(3)如图(见解析),先根据直角三角形的性质可得,从而可得,再分别在和中,根据直角三角形的性质、勾股定理可得,从而可得,然后在中,利用勾股定理即可得.【详解】(1)在中,,点是中点,,同理可得:,,在中,,,,又,,,,,,,;(2)结论成立,理由如下:如图,分别取AB的中点为M,取AD的中点为N,连接FM、CM、EN、FN,,,又点是中点,是的中位线,,,同理可得:,,绕点按顺时针方向旋转角,,,,,,,,,同理可得:,,在和中,,,,,是等边三角形,,,,,,,;(3)如图,过点G作,交AE延长线于点F,在中,,,,,由旋转的性质得:,在中,,,在中,,,,则在中,.【点睛】本题考查了直角三角形的性质、三角形中位线定理、三角形全等的判定定理与性质、旋转的性质等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键.12.(1)①EF=BE+DF;②成立,理由详见解析;(2)DE=.【分析】(1)①根据旋转的性质得出AE=AG,∠BAE=∠DAG,BE=DG,求出∠EAF=∠GAF=45°,根据SAS推出△EAF解析:(1)①EF=BE+DF;②成立,理由详见解析;(2)DE=.【分析】(1)①根据旋转的性质得出AE=AG,∠BAE=∠DAG,BE=DG,求出∠EAF=∠GAF=45°,根据SAS推出△EAF≌△GAF,根据全等三角形的性质得出EF=GF,即可求出答案;②根据旋转的性质作辅助线,得出AE=AG,∠B=∠ADG,∠BAE=∠DAG,求出C、D、G在一条直线上,根据SAS推出△EAF≌△GAF,根据全等三角形的性质得出EF=GF,即可求出答案;(2)如图3,同理作旋转三角形,根据等腰直角三角形性质和勾股定理求出∠ABC=∠C=45°,BC=4,根据旋转的性质得出AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,求出∠FAD=∠DAE=45°,证△FAD≌△EAD,根据全等得出DF=DE,设DE=x,则DF=x,BF=CE=3﹣x,根据勾股定理得出方程,求出x即可.【详解】解:(1)∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,∴AE=AG,∠BAE=∠DAG,BE=DG,∠B=∠ADG=90°,∵∠ADC=90°,∴∠ADC+∠ADG=90°∴F、D、G共线,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠EAF=∠GAF=45°,在△EAF和△GAF中,∵,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=DF+DG=BE+DF,故答案为:EF=BE+DF;②成立,理由:如图2,把△ABE绕A点旋转到△ADG,使AB和AD重合,则AE=AG,∠B=∠ADG,∠BAE=∠DAG,∵∠B+∠ADC=180°,∴∠ADC+∠ADG=180°,∴C、D、G在一条直线上,与①同理得,∠EAF=∠GAF=45°,在△EAF和△GAF中,∵,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;(2)解:∵△ABC中,AB=AC=2,∠BAC=90°,∴∠ABC=∠C=45°,由勾股定理得:BC==4,如图3,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF,则AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,∵∠DAE=45°,∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=90°﹣45°=45°,∴∠FAD=∠DAE=45°,在△FAD和△EAD中,∴△FAD≌△EAD(SAS),∴DF=DE,设DE=x,则DF=x,∵BC=4,∴BF=CE=4﹣1﹣x=3﹣x,∵∠FBA=45°,∠ABC=45°,∴∠FBD=90°,由勾股定理得:DF2=BF2+BD2,x2=(3﹣x)2+12,解得:x=,即DE=.【点睛】本题考查了四边形的综合题,旋转的性质,全等三角形的性质和判定,勾股定理的应用,此题是开放性试题,运用类比的思想;首先在特殊图形中找到规律,然后再推广到一般图形中,对学生的分析问题,解决问题的能力要求比较高.13.(1)见解析;(2)AC平分∠BCD,理由见解析;(3)AF=4.【分析】(1)由圆内接四边形互补可知∠A+∠C=180°,∠ABC+∠ADC=180°,再证AD=CD,即可根据等补四边形的解析:(1)见解析;(2)AC平分∠BCD,理由见解析;(3)AF=4.【分析】(1)由圆内接四边形互补可知∠A+∠C=180°,∠ABC+∠ADC=180°,再证AD=CD,即可根据等补四边形的定义得出结论;(2)过点A分别作AE⊥BC于点E,AF垂直CD的延长线于点F,证△ABE≌△ADF,得到AE=AF,根据角平分线的判定可得出结论;
(3)连接AC,先证∠EAD=∠BCD,推出∠FCA=∠FAD,再证△ACF∽△DAF,利用相似三角形对应边的比相等可求出AF的长.【详解】(1)证明:∵四边形ABCD为圆内接四边形∴∠A+∠C=180°,∠ABC+∠ADC=180°.∵BD平分∠ABC∴∠ABD=∠CBD∴弧AD=弧CD∴AD=CD∴四边形ABCD是等补四边形(2)AC平分∠BCD,理由如下:过点A作AE⊥BC于E,AF⊥CD于F则∠AEB=∠AFD=90°∵四边形ABCD是等补四边形∴∠ADC+∠B=180°又∵∠ADC+∠ADF=180°∴∠B=∠ADF在△AFD与△AEB中∴≌∴∴点A一定在∠BCD的平分线上即AC平分∠BCD.(3)连接AC同(2)理得∠EAD=∠BCD由(2)知AC平分∠BCD所以∠FCA=∠BCD同理∠FAD=∠EAD∴∠FCA=∠FAD.又∵∠F=∠F∴△FAD∽△FCA∴即∴AF=4【点睛】本题考查了新定义等补四边形,圆的有关性质,全等三角形的判定与性质,角平分线的判定,相似三角形的判定与性质等,解题关键是要能够通过自主学习来进行探究,运用等.14.(1);(2)a2+b2=5c2,证明见解析;(3)4【分析】(1)首先证明△APB,△PMN都是等腰直角三角形,求出PA、PB、PN、PM,再利用勾股定理即可解决问题.(2)结论a2+b2=解析:(1);(2)a2+b2=5c2,证明见解析;(3)4【分析】(1)首先证明△APB,△PMN都是等腰直角三角形,求出PA、PB、PN、PM,再利用勾股定理即可解决问题.(2)结论a2+b2=5c2.设MP=x,NP=y,则AP=2x,BP=2y,利用勾股定理分别求出a2、b2、c2即可解决问题.(3)取AB中点H,连接FH并且延长交DA的延长线于P点,首先证明△ABF是中垂三角形,利用(2)中结论列出方程即可解决问题.【详解】(1)解:如图中,∵CN=AN,CM=BM,∴MN∥AB,MN=AB=2,∵tan∠PAB=1,∴∠PAB=∠PBA=∠PNM=∠PMN=45°,
∴PN=PM=2,PB=PA=4,
∴AN=BM=,∴b=AC=2AN=4,a=BC=4,∴,故答案为:;(2)结论a2+b2=5c2.证明:如图中,连接MN.∵AM、BN是中线,
∴MN∥AB,MN=AB,∴△MPN∽△APB,∴,设MP=x,NP=y,则AP=2x,BP=2y,
∴a2=BC2=4BM2=4(MP2+BP2)=4x2+16y2,b2=AC2=4AN2=4(PN2+AP2)=4y2+16x2,c2=AB2=AP2+BP2=4x2+4y2,∴a2+b2=20x2+20y2=5(4x2+4y2)=5c2.(3)解:如图中,∵四边形ABCD是平行四边形,∴AE∥BF,∴,在△AGE和△FGB中,,∴△AGE≌△FGB,
∴AG=FG,取AB中点H,连接FH并且延长交DA的延长线于P点,
同理可证△APH≌△BFH,
∴AP=BF,PE=2BF=CF,
即PE∥CF,PE=CF,
∴四边形CEPF是平行四边形,
∴FP∥CE,
∵BE⊥CE,
∴FP⊥BE,即FH⊥BG,
∴△ABF是中垂三角形,
由(2)可知AB2+AF2=5BF2,∵AB=3,BF=AD=,∴9+AF2=5×,∴AF=4.【点睛】本题是四边形综合题,考查了三角形中位线定理、平行四边形的判定和性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是理解题意,学会添加常用辅助线构造全等三角形,学会利用新的结论解决问题,属于中考压轴题.15.(1)①见解析;②CG=2EG;(2)见解析;(3);(4)【分析】(1)①根据等腰直角三角形的性质证得AD=CD,再证明△AFG△ADG,即可证明结论;②根据①得到BC=2AF,FG=GD,解析:(1)①见解析;②CG=2EG;(2)见解析;(3);(4)【分析】(1)①根据等腰直角三角形的性质证得AD=CD,再证明△AFG△ADG,即可证明结论;②根据①得到BC=2AF,FG=GD,再证明△AFG△BCG,即可得到CG=2EG;(2)先证得四边形ABEC为正方形,同理得△AFG△AEG和△AFG△BCG,即可得证;(3)根据等腰直角三角形的性质得到,证得△AFG△BCG,即可求解;(4)根据等腰直角三角形的性质得到BC=2AD,继而得到,由△AFG△BCG,即可求解.【详解】(1)①△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D,∴AD=BD=CD=BC,∠BAD=∠CAD=45°,根据旋转的性质得:AF=AD,∠DAF=90°,∴∠GAF=∠GAD=45°,在△AFG和△ADG中,,∴△AFG△ADG,∴AF=AD,∴AF=CD;②CG=2EG,理由如下:由①得:∠GAF=∠B=45°,AF=BC,∴AF∥BC,2AF=BC,∴△AFG△BCG,∴,∴CG=2FG,∵△AFG△ADG,∴FG=DG,即FG=EG,∴CG=2EG;(2)连接EB、EC,∵∠BAC=90°,AB=AC,AD⊥BC于点D,DE=AD,∴DE=AD=BD=CD,且AE⊥BC,∠BAC=90°,∴四边形ABEC为正方形,∴BC=AE,根据旋转的性质得:AF=AE,∠EAF=90°,∴∠GAF=∠GAE=45°,在△AFG和△AEG中,,∴△AFG△AEG,∴AF=AE=BC,FG=EG,在△AFG和△BCG中,,∴△AFG△BCG,∴FG=CG,∴FG=CG=EG,∴CF=2EG;(3)同理得:FG=EG,△ABC中,∠BAC=90°,AB=AC,∴,即,同理得:△AFG△BCG,∴,∴,∴,∴;(4)同理可得:FG=EG,BC=2AD,AF=AE,∵,∴,同理可得:△AFG△BCG,∴,∴,∴,∴;【点睛】本题考查了全等三角形的判定和性质、相似三角形的判定和性质、等腰直角三角形的判定和性质、正方形的判定和性质以及旋转变换的性质,掌握全等三角形的判定和性质、相似三角形的判定和性质是解题的关键.16.(1);(2)结论成立,见解析;(3)1或2【分析】(1)问题发现:通过角的关系可证△ABD∽△DCE,根据相似三角形对应边成比例可得到线段的关系;(2)拓展探究:可证明△ABD∽△DCE,解析:(1);(2)结论成立,见解析;(3)1或2【分析】(1)问题发现:通过角的关系可证△ABD∽△DCE,根据相似三角形对应边成比例可得到线段的关系;(2)拓展探究:可证明△ABD∽△DCE,即可得到结论;(3)解决问题:可证△PBM∽△MCG,然后得到,用t可表示线段的长,当G点在线段AC上时,若△APG为等腰三角形时,则AP=AG,代入计算即可;当G点在CA延长线上时,若△APG为等腰三角形时,则△APG为等边三角形,代入计算得到t.【详解】解:(1)问题发现AB,CE,BD,DC之间的数量关系是:,理由:∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAD+∠ADB=180°﹣60°=120°,∠ADE=60°,∴∠CDE+∠ADB=180°﹣60°=120°,∴∠BAD=∠CDE,∴△ABD∽△DCE,∴.故答案为:.(2)拓展探究(1)中的结论成立,∵AB=AC,∠B=α,∴∠B=∠C=α,∴∠BAD+∠ADB=180°﹣α,∵∠ADE=α,∴∠CDE+∠ADB=180°﹣α,∴∠BAD=∠CDE,∴△ABD∽△DCE,∴;(3)解决问题∵∠B=30°,AB=AC=4cm,∴∠B=∠C=30°,∴∠BPM+∠PMB=180°﹣30°=150°,∵∠PMG=30°,∴∠CMG+∠PMB=180°﹣30°=150°,∴∠BPM=∠CMG,又∠B=∠C=30°,∴△PBM∽△MCG,∴,由题意可知AP=t,BM=t,即BP=4﹣t,如图1,过点A作AH⊥BC于H,∵∠B=30°,AB=AC=4cm,∴AH=2cm,BH===2cm,∵AB=AC,AH⊥BC,∴BC=2BH=4cm,∴MC=(4t)cm,∴,即CG=3t,当G点在线段AC上时,若△APG为等腰三角形时,则AP=AG,如图2,此时AG=AC﹣CG=4﹣3t,∴4﹣3t=t,解得:t=1,当G点在CA延长线上时,若△APG为等腰三角形时,如图3,此时∠PAG=180°﹣120°=60°,则△APG为等边三角形,AP=AG,此时AG=CG﹣AC=3t﹣4,∴3t﹣4=t,解得:t=2,∴当△APG为等腰三角形时,t的值为1或2.【点睛】本题是三角形综合题,考查了等腰三角形的性质,等边三角形的判定与性质,相似三角形的判定与性质,熟练掌握分类的思想方法是解题的关键.17.【问题发现】;【类比探究】上述结论还成立,理由见解析;【拓展延伸】或.【分析】问题发现:证出AB∥EF,由平行线分线段成比例定理得出,即可得出结论;类比探究:证明△ACE∽△BCF,得出,即解析:【问题发现】;【类比探究】上述结论还成立,理由见解析;【拓展延伸】或.【分析】问题发现:证出AB∥EF,由平行线分线段成比例定理得出,即可得出结论;类比探究:证明△ACE∽△BCF,得出,即可的结论;拓展延伸:分两种情况,连接CE交GF于H,由正方形的性质得出AB=BC=4,AC=AB=4,GF=CE=CF,GH=HF=HE=HC,得出CF=BC=2,GF=CE=2,HF=HE=HC=,由勾股定理求出AH==,即可得出答案.【详解】问题发现:AE=BF,理由如下:∵四边形和四边形是正方形,∴,,CE=CF,,∴,∴,∴AE=BF;故答案为:AE=BF;类比探究:上述结论还成立,理由如下:连接,如图2所示:∵,∴,在和中,CE=CF,CA=CB,∴,∴,∴,∴AE=BF;拓展延伸:分两种情况:①如图3所示:连接交于,∵四边形和四边形是正方形,∴,AC=AB=4,GF=CE=CF,,∵点为的中点,∴,GF=CE=2,GH=HF=HE=HC=,∴∴AG=AH+HG=;②如图4所示:连接交于,同①得:GH=HF=HE=HC=,∴,∴AG=AH-HG=;故答案为:或.【点睛】本题是四边形综合题目,考查了正方形的性质、旋转的性质、平行线分线段成比例定理、相似三角形的判定与性质、勾股定理等知识;熟练掌握正方形的性质,证明三角形相似是解题的关键.18.(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.理由见解析;(3)S△PMN最大=.【分析】(1)由已知易得,利用三角形的中位线得出,,即可得出数量关系,再利用三角形的中位线得出得解析:(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.理由见解析;(3)S△PMN最大=.【分析】(1)由已知易得,利用三角形的中位线得出,,即可得出数量关系,再利用三角形的中位线得出得出,最后用互余即可得出位置关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 跨境电商关税代理合同(化妆品类2025年)
- 跨境电商独立站域名备案协议2025年责任版
- 跨境电商2025年跨境电商保税仓物流合作协议
- 口罩生产供应协议2025年样品确认
- 2025年办公楼电梯系统服务协议
- 2025年IT行业兼职工作合同协议
- 铁路面试题及答案
- 汛期安全面试题目及答案
- 护士如何备考面试题目及答案
- 深度解析(2026)《GBT 35205.5-2021越野叉车 安全要求及验证 第5部分:伸缩臂式叉车和集成式人员工作平台的连接装置》
- 招聘及面试技巧培训
- 贵州兴义电力发展有限公司2026年校园招聘考试题库附答案
- 2025年水果连锁门店代理合同协议
- 朱棣课件教学课件
- 农业推广计划课件
- 苏教版四年级数学上册期末考试卷(附答案)
- 血脂分类及临床意义
- 2025年校长述职:把一所学校办成“看得见成长”的地方
- 加油站运营管理实习心得体会
- 太阳能光伏板清洗设备安装施工方案
- 柴油供油合同协议书
评论
0/150
提交评论