AI智能体时代 技术指南2025 The Era of AI Agents Tech Guide 2025_第1页
AI智能体时代 技术指南2025 The Era of AI Agents Tech Guide 2025_第2页
AI智能体时代 技术指南2025 The Era of AI Agents Tech Guide 2025_第3页
AI智能体时代 技术指南2025 The Era of AI Agents Tech Guide 2025_第4页
AI智能体时代 技术指南2025 The Era of AI Agents Tech Guide 2025_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

TheEraofAIAgents

TechGuide2025

“ChatGPTbecomingincreasingly

agentic,meaningit’smovingfrom

simplyansweringquestionsto

performingtasksproactively”

–KevinWeil,OpenAICPO

AboutthisTechGuide

WelcometotheEraofAIAgents

Inthefuture,theseautonomous,intelligentsystemswillfundamentallychangeourworkingandpersonallives.

ThisTechGuideprovidesacomprehensiveoverviewof

thecentralroleAIAgentsplaywithindigitaltransformation.

Withcurrentperspectivesandpracticalinsights,thisguideshowshowcompaniescanautomateprocesses,createpersonalizedexperiences,anddriveinnovation.

ThisTechGuideoffersyou:

→Acomprehensiveoverview:UnderstandtheroleofAIAgentsandwhytheyrepresentthenext

stageofdigitaltransformation.

→Currentperspectives:Learnhowcompaniesare

usingAIAgentstoautomateprocessesand

deliverpersonalizedreal-timeexperiences.

→Challenges:OvercomethehurdlesofAI

development,integration,andgovernanceforsuccessfulimplementation.

WhocreatedthisTechGuide?

Authors

AboutSHAPEDACHGmbH

SHAPErepresentspioneeringsolutionsandstrategicconsultingindigitaltransformation.With12yearsofexperienceandateamof140expertsacrosssixlocationsinGermany,Switzerland,and

Croatia,SHAPEofferscomprehensiveservicesininnovationstrategy,productandservicedevelopment,UXdesign,andcustomizedsoftwaresolutions.

Thecompany,whichhasreceivednumerousawardsandcertifications,ispartoftheinternationalMYTYGroup.

LasseGruner-Lüders

ManagingDirector

GarritFranke

SoftwareDeveloper&AIExpert

TatjanaSchultze

CommunicationsManager

CarolGrunerfeat.Midjourney

Design&CreativeAI

AI–AQuickOverview

TheFoundation:ArtificialIntelligence

ArtificialIntelligence(AI)usesalgorithms,machine

learning,anddataprocessingtorecognizepatterns,makepredictions,andadapttonewchallenges.Itisthedrivingforcebehindthenextwaveoftechnology.

AIisalreadybeingusedinvariousfields,fromvoice

assistantsandautonomousvehiclestodiagnosticsystemsandpersonalizedrecommendations.

AITransformationastheNextStageofDigitalTransformation

Source:InspiredbyNilsSeebachonLinkedIn

2025–2030

2030–2040

TimelinefortheDevelopmentofFutureAISystems–Don’tBelievetheHype!

Evolutionofcurrenttechnologies

TechnologicalbreakthroughsinmachinelearningandNLP,growingdemandforAIAgents.

●AIAgents

●EmotionalAI

●LimitedQuantumAI

Transitiontonewparadigms

Advancesincommunicationtechnologies

anddecentralizeddataprocessing,alongsideethicalandregulatorydevelopments.

●CollectiveAI

●BiologicalAI

●ExpansionofQuantumAIintonewindustries

2040andbeyond

TheeraofArtificialGeneralIntelligence(AGI)

Majoradvancesinalgorithmsandhardware,societalpressure,andcollaborationbetweenkeyplayers.

●AGIwithhuman-likeintelligence

●MergingofAGI,QuantumAI,CollectiveAI,andBiologicalAI

TheEvolutionofArtificialIntelligence

ArtificialNarrowIntelligence

(ANI)

Specializedinspecifictasks(e.g.,

languageprocessing,imagerecognition).

ArtificialGeneralIntelligence

(AGI)

Generalintelligencecomparableto

humanthinkingcapabilities.

ArtificialSuperintelligence

(ASI)

Surpasseshumanintelligenceandabilitiesinallareas.

DeepDiveAIAgents

AIAgents

AIAgentsareintelligentsystemsthatuseartificialintelligencetorevolutionizehowbusinessesandindividualsinteractwithtechnology.

Theygobeyondpredictivesystems:Unliketraditional

automationtools,whichfunctionmerelyas"co-pilots"orpredictivesystems,AIAgentsareflexibleandcapableoflearning.

DifferenceBetweenAIChatbotsandAIAgents

AIChatbots

Untiltheendof2024,AIChatbotswerethemostcommonandeverydayformofAItechnology.

TheyarebasedonLargeLanguageModels(LLMs),aremodality-bound,andrelyontheuser’schathistoryas

memory.Theirknowledgeisstaticandlimited,making

themprimarilysuitableforshort-term,well-definedgoals.

AIAgents

Sincelate2024,thefirsttrulypowerfulAIAgentshavebeenintroduced.

AIAgentsoperateonadynamicreasoningframework,

enrichtheirknowledgethroughtoolintegrationsand

long-termmemorysystems,andcanmakeindependent

decisions.WithaccesstoAPIs,externaldatasources,andadvancedfunctionalities,theyexcelinlong-term,complextasksfarbeyondthecapabilitiesoftraditionalchatbots.

DifferentANIAIModels

LLM

Prompt

LLM

Answer

LLM(e.g.ChatGPT)

RAG

PromptContext

ContinuousProcessing

LLM

Answer

RetrievalAugmentedGeneration

(e.g.CompanyChatbot)

AGENT

Prompt

Tools

Memory

LLM

Answer

Action

Newera:autonomousSystems

AIAgents:AutonomyandAction

Withsyntheticintuitionandmultimodaldataprocessing,

theydevelopadeepunderstandingofcomplexcontextsandactautonomouslybasedonextensivedataanalysis.Theycanindependentlyexecutetasksandmakereal-timedecisions.

Theseabilitiesmakethemindispensabletoolsintoday’sfast-paceddigitalworld.

AIAgentConcept

Action(e.g.bookingaflight,schedulingappointments)

3

4

AIAgent

BaseGPT

GenerateReponse

Planmyday

Tool

integration

Question&Context

LLMEndpoint

1Ingestion

learn

2

Long-termMemory:Storage&ContextRetrieval

2Retrieval

Memory

&DataBase

store

embed

split

1

3Augmentation

Chunks

DataSource

EmbeddingsEndpoint

4Generation

Differences:Automationvs.AIWorkflowvs.AIAgents

Aspect

Automation

AIWorkflows

AIAgents

TaskType

Deterministic,repetitivetasks

Morecomplextasks

requiringflexibility

Adaptive,dynamictasks

Strengths

Fast,reliable,easytoimplement

Patternrecognition,flexibledecision-making,analyticalabilities

Cananticipatenewscenarios,highautonomy

Weaknesses

Noadaptability

Requireswell-prepareddata

Lessreliable,unpredictableresultspossible

Examples

Emailfiltering,automatedinvoicing

Textgeneration,analysisbasedonuserinput

Chatbotswithcontext

understanding,adaptivetoolsforstrategy

MostCommonAIAgents

ReflexAgent

Directresponsetoconditions

Reflexagentsoperatebasedonsimpleruleslike"Ifx,theny".Theyare

straightforward,efficient,andidealfor

well-defined,predictabletasks.However,theircapabilitiesarelimitedasthey

neitherpursuelong-termgoalsnorlearnfrompastexperiences.

Goal-BasedAgent:

Plansactionstoachieveagoal

Agoal-basedagentisdesignedtopursueaspecificobjective.Itautonomously

createssequencesofactionstoreachitstarget.Theseagentsareparticularly

suitedfortasksrequiringflexibilityanddecision-makingindynamic

environments.

LearningAgent:

Adaptsandimprovesthroughexperiences

Learningagentstakethingsastep

further:theynotonlyfollowpredefinedorself-setgoalsbutalsocontinuouslyrefinetheiractionsthroughexperience.In

unknownorchangingenvironments,theygatherdata,analyzeoutcomes,and

adjusttheirstrategiesaccordingly.

StagesofAgenticness

Agenticness

ReflexAgent

Goal-BasedAgent

LearningAgent

GoalComplexityHowchallengingandflexiblearetheobjectives?

EnvironmentalComplexity

Howdynamicistheenvironment?

Adaptability

Howwelldoesthesystemadjusttounforeseensituations?

Autonomy

Howindependentlydoesthesystemact?

FourReasonstouseAIAgents

KeytoCompetitiveness&

Efficiency

Companiesfacepressuretoautomateprocessesinordertoreducecostsandincreaseefficiency.AIAgentsenablethe

automationofrepetitivetasksandtheoptimizationofcomplexworkflows.

MeetingHigherCustomerDemandsintheDigitalEra

AIAgentsprovidereal-timepersonalizedrecommendationsand24/7customersupport,leadingtohighercustomer

satisfactionandstrongercustomerloyalty.

WideApplicationAreas&

Scalability

AIAgentsareversatileandcanbeusedacrossindustries,

fromhealthcaretologistics.Withintelligentdatautilizationandcloudcomputing,projectscanscaleflexibly,whileedge

computingminimizeslatency.

Regulations&Ethicsasthe

BasisofTrust

TheEUAIActanddataprotectionregulationsestablishclearguidelinesfortheuseofAIAgents.Atthesametime,flexiblegovernancemodelsneedtobedevelopedtocomplywith

theseregulations.

TheUseofAIinCompanies

Industry-SpecificAIApplications

Industry

Optimizessupplychains,minimizesresourceuse,andincreases

efficiency.

Education

Supportspersonalizedlearningprogramsandautonomous

researchagents.

Healthcare

Assistswithdiagnostics,therapyplanning,andpatient

management.

Logistics

Simplifiesrouteoptimization,real-timetracking,and

warehousemanagement.

Retail

Enhancessupplychainsandoffersround-the-clockvirtualassistants.

Finance

Enablesdata-drivendecisionsandimprovesfinancialprocesses.

InvestmentsinArtificialIntelligenceAreRapidlyIncreasingWorldwide

GlobalMarketVolume

ProjectionsindicatethattheglobalAImarketwillreacha

volumeofover$1.847trillionby2030,withanaverageannualgrowthrateof32.9%between2022and2030.

ContributiontoGDP

Estimatessuggestthatby2030,AIcouldcontributetrillionstoglobalGDP,drivingfundamentalchangesinhowwework,

innovate,andsolveproblems.

InvestmentsintheUSA

USPresidentDonaldTrumpannouncedthe"Stargate"projectto

promoteartificialintelligence,withinvestmentsofatleast$500

billion.Thisprojectaimstocreateover100,000jobsandstrengthenAIinfrastructureintheUSAthroughtheconstructionofmassive

datacenters.

GermanSMEs

Arecentstudyshowsthatuppermid-sizedcompaniesinGermanyhavehighhopesforAI.54%ofrespondentsexpecttoincreasetheirbudgetsforAIprojectsbyupto25%.

Source:(1)produktion.de(2)(3)welt.de(4)AvanadeTrendlines:AIValueReport2025

AnAIAgentinyourcompany?

Manycompaniescanbenefitfromintegratingartificial

intelligence.However,choosingtherightAIsystemdependsentirelyonthecompany’sspecificneedsandprocesses.

Multi-levelagentsystemsonlybecometrulybeneficialwhensimplersolutionshavereachedtheirlimits.Forthisreason,astrategicAIconsultationisworthwhiletoidentifywhatthe

companyneedsandwhatcanrealisticallybeimplemented.

Source:

DemoGoogle’sCustomerAgent

ProperlyintegratingAIintoyourBusiness

BeforecompaniescaneffectivelydeployAIAgents,theymustfirstensurethatartificialintelligenceisseamlesslyintegratedintotheirprocesses.

Bytakingtherightsteps,businessescanensurethatAI

Agentsoperateefficientlyandsustainably,maximizingtheirbenefitswhileminimizingrisks.

IdentifyingUseCases

Withgreatercompetenceandacceptance,thenumberofusecasesincreases

BuildingAICompetence

ThroughtargetedandmandatorytrainingandaccesstoAIexperts

IncreasingAcceptance

Throughpositiveexamples,awareness-raising,andcompellingarguments

MeasurestooptimizeyourBusiness

Area/Prerequisite

GoalsandAreasofApplication

DataandInfrastructure

IntegrationintoExistingProcessesandSystems

InvolveandTrainEmployees

MonitoringandOptimization

LegalandEthicalCompliance

Partnerships&PilotProjects

PlanforScalabilityandFurtherDevelopment

Measure

AnalyzeneedsanddevelopanAIstrategy

Ensuredataqualityandbuildscalableinfrastructure

SeamlesslyintegrateAIAgentsintosystemsandutilizeflexibleAPIsConducttrainingsessionsandfosteracceptance

Implemen

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论