2013–2023 年 II 期与 III 期临床试验终止情况分析 Analysis of phase II and phase III clinical trial terminations from 2013 to 2023_第1页
2013–2023 年 II 期与 III 期临床试验终止情况分析 Analysis of phase II and phase III clinical trial terminations from 2013 to 2023_第2页
2013–2023 年 II 期与 III 期临床试验终止情况分析 Analysis of phase II and phase III clinical trial terminations from 2013 to 2023_第3页
2013–2023 年 II 期与 III 期临床试验终止情况分析 Analysis of phase II and phase III clinical trial terminations from 2013 to 2023_第4页
2013–2023 年 II 期与 III 期临床试验终止情况分析 Analysis of phase II and phase III clinical trial terminations from 2013 to 2023_第5页
已阅读5页,还剩81页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

WHENTRUSTMATTERS

DNV

MARITIMENUCLEARPROPULSION

Technologies,commercialviability,andregulatorychallengesfornuclear-poweredvessels

WHITEPAPER

Maritimenuclearpropulsion

Contents

Foreword3

Executivesummary4

1

.Introduction

6

2

.Civilianmaritimenuclearpropulsion:Backagain?

8

2.1Themaritimenuclearfuelcycle–inperspective9

2.2Arenon-civilianmarinenuclearvesselsrelevant?13

3

.Civiliannuclearpropulsiontechnologyreadiness14

3.1Whatarethepreferredproperties?15

3.2Candidatetechnologiesandprojects17

4

.Internationalandnationalagreementsandregulations20

4.1Existingregulatoryframeworks23

4.2Regulatoryroadmaps–themaritime-nuclearregulatorynexus24

5.Businessmodelsandcosts28

5.1Howtooperatemaritimenuclearinstallations?30

5.2Whatdoesnuclearpropulsioncost?31

6.Simulatingnuclearpropulsioninmerchantshipping36

Annex:Investmentassumptionsfornuclearandconventionalvessels40

Listofabbreviations42

References43

Projectteam

Disclaimer

Independence,impartiality,andadvisorylimitations

ThisdocumentcontainscontentprovidedbyDNV.Pleasenotethefollowing:Ethicalsafeguards

Tomaintainintegrityandimpartialityessentialtoitsthird-partyroles,DNVperformsinitialconflictof-interestassessmentsbeforeengaginginadvisoryservices.

Priorityofroles

ThisreportisgeneratedbyDNVinitsadvisorycapacity,subsequenttocon-

flict-of-interestassessments.ItisseparatefromDNV’sresponsibilitiesasathird-

partyassuranceprovider.Whereoverlapexists,assuranceactivitiesconductedbyDNVwillbeindependentandtakeprecedenceovertheadvisoryservicesrendered.Futureassurancelimitation

ThecontentinthisdocumentwillnotobligateorinfluenceDNV’sindependentandimpartialjudgementinanyfuturethird-partyassuranceactivitieswithDNV.

Compliancereview

DNV’scompliancewithethicalandindustrystandardsintheseparationofDNV’srolesissubjecttoperiodicexternalreviews.

2

OleChristenReistad,EirikOvrum,ErikStensrud,AnneSophieSagbakkenNess

Photocredits:

Adobe:7,22,27,41;ElenaDider,CCBY-SA4.0,viaWikimediaCommons:34;EltonLord/Atomic

EnergyCommission,Publicdomain,viaWiki-

mediaCommons:13;HendrikBrinks:31;Mick

Tully:2;Shutterstock/Tawansak:1;Shutterstock/

StockStudioAerials:19

Authors

Maritimenuclearpropulsion

FOREWORD

Asthedrivefordecarbonizationbecomesmoreurgent,theworldstandsinneedofsolutionsthatcanmeetthemoment.Thisextendstoshipping–anindustrywhich

providesthebackbonetoworldtradebutwhereambi-tiousdecarbonizationtargetshavebeensetandincreas-inglyproactiveregulationsarebeingimplemented.

Decarbonizationisnolongeradistantambitionbutan

immediatenecessity,anobligation,andaformallyagreedobjective.Everyviablepathwaymust,therefore,be

carefullyconsidered,includingthosepreviouslydeemedimprobable.

Nuclearpropulsion,onceregardedasadistantprospect,isnowunderactiveconsiderationasarealoptionforthecommercialmaritimefleet.Shipyardsandshipowners

areexploringitspotentialandweighingthepromiseofvirtuallyemission-freepoweragainstthecomplexityofintroducingsuchatransformativetechnologyintocom-mercialfleets.

Thistechnologycarriesinherentrisks.Itsacceptance

willdependnotonlyontechnicalperformancebutalsoontheconfidenceofthepublicitserves.Inthiscontext,independentandcompetentassurancebecomesindis-pensable.Itisthemechanismbywhichrisksareman-

aged,trustisbuilt,andcredibilityisearned.Assuranceisnotsimplyasafeguard–itisanenablerofprogress.

Themaritimesectorbenefitsfromalong-established

systemofclassificationsocietiesthatharmonizetechnicalrules,provideindependentverification,andbridgethe

gapbetweenregulationandoperation.Thisframework

enablesthedevelopmentandassessmentofnewtechnol-ogies,includingnuclearpropulsion,withinacoherentandinternationallyrecognizedassurancestructure.

Nocomparablesystemexistsintheland-basednuclearsectors,whereregulatoryresponsibilitiesarefragmentedandprimarilynationallydefined.Theexperienceand

institutionalframeworksofthemaritimeclassification

systemthereforeofferauniquefoundationforenablingciviliannuclearpropulsion–creatingamodelofharmo-nizedoversightthatcouldinspirebroaderapproachestoinnovationinotherhigh-risk,high-valuetechnologies.

Thisreportexploresthetechnologies,commercialvia-

bility,andregulatorychallengesthatframethefutureof

nuclearpropulsion.Itseekstoprovideclarityinacomplexfieldandtosupportinformeddecisionsonwhether,andhow,thisoptioncanplayaresponsibleroleinshapingthefutureofmaritimetransport.

Asthemaritimeindustrynavigatesthecomplexitiesof

decarbonization,nuclearpropulsionpresentsbotha

formidablechallengeandatransformativeopportunity.

Whetherthistechnologybecomesacornerstoneoffuturefleetswilldependonourcollectiveabilitytomanageitsrisks,earnpublictrust,andestablishrobustassurance

frameworks.

Thisreportaimstoequipstakeholderswiththeinsightsneededtoevaluatethisoptionresponsibly,toinnovate

withintegrity,andtoshapeasustainablefutureforglobalshipping.

OleChristenReistad

SeniorPrincipalResearcher

DNV

3

Maritimenuclearpropulsion

4

EXECUTIVESUMMARY

Astheshippingindustryfacesmountingfinancialand

regulatorypressurestodecarbonize,nuclearpropulsionisincreasinglyviewedasapotentialsolution,offeringthepromiseofstable,predictableenergycosts,enhanced

operationalflexibility,andreducedrelianceontraditionalbunkeringinfrastructure.

Whilenocivilianmaritimenuclearfacilitieshavebeen

commissionedinoverfourdecades,shiftingenvironmen-tal,technological,regulatory,andcommercialdynamicsarereignitinginterestsandhighlightingthetransforma-tiverolethatnuclearpowercouldplayinthemaritime

industryoverthecomingdecades.Thiswhitepaper

describesthecurrentstateofplayofnuclearmaritimepropulsionandemphasizestheneedfortechnologicalinnovation,regulatoryclarity,andeconomicfeasibility.

Althoughnuclearpropulsionanditssupportinginfra-

structurearenotyetcommerciallyviable,pastoperatingexperienceoffersvaluableinsightsforthepathahead.

Almostallpreviouscommercialprojects–vesselssuchasSavannah,OttoHahn,andMutsu–operatedusingpres-surizedwaterreactors(PWRs),whichrequiredextensivemonitoringandactivesafetysystemstomanagetran-

sients.Thisreactortypetypicallydemandsalarge,highlyskilledcrew,increasingoperationalcostsandposing

commercialchallengesforshipowners.

Manymilitaryvesselshavealsobeendeployedwith

nuclearpropulsiontechnology.However,theirrelevancetofuturecommercialprojectsisconsideredlimited,duetothedifferingtechnologicalandcommercialrealitiesofthesevessels.

Withtheseconsiderationsinmind,thiswhitepaper

outlinesthepreferredcharacteristicsofreactorconceptscurrentlybeingdevelopedformarineuse.Allmaritime

nucleartechnologieswilldifferfromland-basedequiv-

alentsduetosomekeycharacteristics,suchasmobility,exposuretoharshseaconditions,andoperationalprofile.Further,maritimeinstallationswillvarysignificantly

dependingontheirpurpose–propulsion(nuclear-pow-eredships,NPSs)orpowergeneration(floatingnuclearpowerplants,FNPPs.

Designchoicessuchassingleversusdualreactorsinvolvetrade-offsbetweencost,space,reliability,andpower

availability.Smaller,standardizedreactorsmayoffer

advantagesformerchantshipping,especiallyifthey

featurepassivesafetysystemsandminimalcrewrequire-ments.Low-pressuresystemsandGenerationIVorheat-pipereactorscouldbepreferredfortheirinherentsafetyandreducedcomplexitycomparedtotraditionalPWRs.

Marinereactorsmustbecompactanddesignedfor

infrequentrefuelling–ideallyalignedwithotherrequiredmaintenanceactivitiessuchasdry-dockingtominimize

impactsonshipavailability.Refuellinglogisticsarecon-finedtospecializedports,andglobalnuclearfuelsupplychainsfacepressureduetogeopoliticalshifts.Thereac-tor’spurpose–mechanicalpropulsionorelectricpower–determinesthesystemconfiguration,withsteamturbinesornuclear-electricsetupsofferingdifferentbenefits.

Higherfuelenrichmentlevelsmaybenecessarytomeetoperationaldemands,andonlinerefuellingcouldreshapecurrentlimitations.

Ultimately,reactortechnologyselectionhingesonbalanc-ingsafety,efficiency,andoperationalfeasibility.Severalprojectsindifferentcountriesarealreadyunderwaywithdifferingapproachestofuel,coolant,andsafety.

Translatingtheseconceptsintocommercialrealityrequiresmorethantechnicalinnovation,however.

Acost-effectiveandprovennuclearfuelcycle,tailored

formaritimeuse,mustbedevelopedbytheindustry.Thisincludesestablishingclearlydefinedrolesandresponsi-bilitiesacrossthesupplychain,fromfuelproductionandreactorintegrationtoloading,exchange,anddisposal.

Crucially,storageanddisposalofspentnuclearfuelarefundamentaltothefunctionalityandcredibilityofthe

supplychain.Reactordesignandfueltypewilldirectlyinfluencetheserequirements,andthesefactorsmust

beaddressedbeforeanyoperatinglicenseisgranted.Aspartofthis,provisionsforthewholemaritimefuel

cycle–includinglong-termwastemanagement–are

essential,notonlyforregulatorycompliancebutalsoforadvancingpublicacceptance.

Astechnologyandsupplychainsevolve,theymustberigorouslytestedundermaritimeconditions.Duetothehigh-riskpotentialandtheneedforpublicacceptance,thisincludesverificationandassurancesofmajorcom-

Maritimenuclearpropulsion

5

ponents,suchasreactorsystems,fuellogistics,andportinfrastructuretoensuresafeandefficientinstallation,

operation,andmaintenanceatsea.

Thedevelopmentofacommercialmaritimenuclearindus-tryalsoneedstobesupportedbyapredictableandinter-nationallyacceptedregulatoryframework.OrganizationssuchastheIMOandIAEAmustleadeffortstoestablish

standardsforfuelmanagement,shipconstruction,and

operationalprotocols.Classificationsocietieswillplayacriticalroleinenablingglobaladoption,helpingtoover-comethefragmentednatureoftheland-basednuclear

industryandfosteringastandardizedmaritimeapproach.

Theregulatorylandscapefornuclearshippingwilllikely

exceedwhatthemaritimeindustryisaccustomedto,

openingthedoortomultiplefuturesystemconfigura-

tions.Byidentifyingkeyactors,theirmandates,andthe

needforcoordination,regulatoryroadmapsoutlinedin

thiswhitepaperofferessentialguidance.Asrolesmulti-ply,clarifyinginterfacesbecomesincreasinglyimportant–somethingtheseroadmapshelpaddressbymappingkeyinterdependencies.

Safety,securityandnon-proliferationremainparamount.Futureinstallationsmustbedesignedtowithstandcolli-sions,groundings,andexternalthreatssuchassabotageorpiracy.Remotemonitoringandadvancedcommuni-cationcapabilitieswillbeessential,alongwithrigorouscybersecuritymeasures.

Technologicaladvancements,particularlyindigitalization–encompassingautomationandcommunication–are

helpingtoovercomelongstandingchallenges.These

innovationsmayenhancesafety,reducecosts,andsup-porttransparentmonitoringandcybersecurity,factorswhichareallcriticalforbothpublicconfidenceandinter-nationaloversight.

Thesuccessoffuturemaritimenuclearinstallationswillalsodependonthedevelopmentofcompellingbusinessmodels.Thesemustreflectthecommercialrealitiesof

shippingandprovideaclearunderstandingoftotalcostofownership,especiallyacrosstheentirefuelcycle.

Cost-competitivenesscouldbesignificantlyenhanced

throughmodularandstandardizedapproaches,which

streamlineconstruction,simplifymaintenance,provide

independentassurance,andfacilitateregulatoryapprovalacrossjurisdictions.

Progressisbeingmade.TheintegrationofGenerationIII+andIVreactortechnologies,alongwiththeriseofsmall

modularreactors(SMRs),mayenableshorterconstruc-

tiontimes,greaterstandardization,andimprovedsafety.Thesedevelopmentsmayalsosupportreducedcrew

requirementsandoperationalefficiencies,strengtheningthebusinesscasefornuclearpropulsion.

Reactorcostsareakeyfactor.DNVcasestudiespre-

sentedinthispapershowthatnuclearcanoutperform

othertechnologiesunderbothlowandhighfuelprice

scenarios.AreactorcostbelowUSD18,000/kWcouldbecompetitiveiffulldecarbonizationisachievedby2050,whilecostsbelowUSD8,000/kWcouldbeviableeven

withoutfulldecarbonization.

Realizingthepotentialofnuclearpropulsioninmaritimerequiresmorethantechnologicalreadiness.Itdemandscoordinatedglobalaction,involvingawiderangeof

actorsacrossthemaritimeindustry,regulators,andsoci-etyingeneral.

Withstrategicinvestmentandinternationalcollabora-

tion,nuclearenergycouldbecomeacornerstoneofthemaritimeenergytransition,deliveringsafe,efficient,andzero-emissionpropulsionfortheglobalfleet.

FIGURE0-1

Transferofheatfornuclearreactor

SteamTurbineGear

Fuel

Boiler

Oil,LNG

Conventional

propulsionsystem(here:steam)

Water

Condenser

Heat

Primarycircuit

Secondarycircuit

TurbineGear

Steam

Nuclear

propulsionsystem

Steam

Reactor

generator

Water

Condenser

©DNV2025

Heat

Maritimenuclearpropulsion

1

INTRODUCTION

6

Maritimenuclearpropulsion

Currently,nocommercialnuclearfacilitiesareinopera-

tiononcivilianshipsoroffshoreplatformsanywherein

theworld.Yet,fromaneconomicpointofview,several

compellingargumentssupporttheirpotential,notablylowandpredictableenergycosts,albeitwithhighinvestmentcosts.Asthisisatechnologythatproducesnoemissions,theclimateandenvironmentalbenefitsarealsoclear

(DNV,2023)(DNV,2024).Fromanoperationalperspective,nuclearpropulsionenhancesflexibilitybymakinghigherspeedseconomicallyfeasible,evenforlargervessels,

whilethereducedneedforbunkeringinfrastructurecouldhaveamajorimpactontheglobalfleet.

Thisraisesthepivotalquestion:howmighttheseoppor-tunitiesberealizedacrosstheworld?

Theaimofthispaperistodescribethestateofplayof

internationalcommercialactivitiesutilizingnuclearfissionforpropulsionorpowergenerationatsea,andtoprovideabasisfordevelopingastrategytocombinetwocom-

mercialindustrieswithlittlehistoricalcooperation.

Thepaperisdividedintofourparts.

First,inChapter2wedescribethehistoryofmaritime

nuclearpropulsion,providingabriefoverviewofexperi-enceswithnuclear-poweredcivilianmerchantshipsandotherrelevantactivities.Inthischapter,wealsointroducethemaritimefuelcycleandoutlinetheprinciplekey

elementsthatarerelevanttothis,includingthe‘frontend‘(activitiesbeforethereactor,suchasfuelproductionanddelivery)and‘backend‘(post-usemanagement,includingpotentialreprocessingandfinaldisposalofwasteprod-uctsthatcannotbereused).

Secondly,inChapter3,weexaminethereadinessof

civiliannuclearpropulsiontechnologies,comparingthemtoland-basedcounterparts,whileexaminingpreferred

propertiesandcandidatetechnologies,suchaspressur-izedwaterreactors(PWRs),smallmodularreactors(SMRs),moltensaltreactors,lead-cooledreactors,high-tempera-turegasreactors,andheat-pipereactors.

Therealizationofcommercialnuclearpropulsionisalso

dependentonnon-technologicalfactors,andinthethirdpartofthepaper,inChapter4,weprovideadetailed

overviewoftheregulatoryframeworksthatwillbe

requiredforafunctioningnuclearpropulsionindustrytobeinternationallyrecognized,andtoenjoyahighlevelofpublicacceptance.Thiswillinvolvemultiplenationalandinternationalactorsandwilldependonclosecooperationbetweenallparties.

Finally,thesuccessfulemergenceofacommercialmari-timenuclearpropulsionindustrywillhingeonviablebusi-nessmodelsandcosts,andthesefactorsareanalysed

inChapter5.Businessmodelsmustaddressdifferent

factorssuchasownership,leasing,crewsize,andsup-ply-chainmanagement,whilecostcompetitivenesswilldependontheabilityoftheindustrytoimplementstan-dardization,massproduction,andefficiencymanning.

Thesefactorsareallclarifiedthroughadetailedcase

study,presentedinChapter6,wherewesimulatethe

potentialcostlevelsmarinenuclearreactorswillneed

toachievefornuclearpropulsiontoberelevantforthemerchantfleet,andhowthismayaffecttheintroductionofthetechnologyininternationalshipping.

7

Maritimenuclearpropulsion

2

CIVILIANMARITIMENUCLEAR

PROPULSION:BACKAGAIN?

Highlights

–Earlymerchantnuclearshipsdemonstratedtechnicalfeasibilitybutlackedcommercialsuccess,andnocivilianmaritimenuclearfacilitieshavebeencommissionedformorethan40years.

–Themaritimenuclearfuelcycleencompassesallstagesfrom'frontend'to'backend'andincludesuraniummining,enrichment,fuelfabrication,reactoroperation,andspentfuelmanagement.

–Maritimeinfrastructuremustadapttothedemandsofthemaritimefuelscycle,withspecializedyardsandportsfornuclearoperations.

–Whilemuchexperiencecanbegleanedfromnuclear-propelledvesselsformilitarypurposes,theirrelevancetofuturecommercialmaritimenuclearinstallationsislimited

8

Maritimenuclearpropulsion

9

Shipping'sexperiencewithnuclear-poweredvesselsremainslimited.

Whilesomelargecountries,abovealltheUS,United

Kingdom,France,Russia,andChina,todayutilizenuclearenergyextensivelyinboththecivilianandmilitarysec-

tors,thedevelopmentofbothonshorepowergenerationandmaritimenuclearpropulsiondidnotproceedas

expectedatthebeginningofthenuclearage.ApartfromexploratorytestsinRussia,nocivilianmaritimenuclear

facilitieshavebeencommissionedformorethan40years.

However,nuclearisre-emergingasanoptionforfos-

sil-freeenergy.Thishasalsoextendedtothemaritime

industry,wherenuclearenergyhasgainedrenewedinter-est,bothasameansofpowergenerationonsea-basedplatformsandfornuclearpropulsionsystems(DNV,2023)(DNV,2024).

Therearenumerousexamplestodayofnewactors

demonstratinginterestinnuclearenergyinshipping.

TheUKtooktheinitiativein2022toaccedetothe

NuclearCode(seeChapter4),oneofthefewrelevant

internationallegalinstruments.(MandraandOvcina,

2022).Chinaisdescribedasapioneerintheapplicationofnucleartechnologytodecarbonizeshipping(Wang

andQuiwen,2025),andtheChineseshipbuildingcom-panyJiangnanShipbuildingGrouphasdemonstrateditseffortstomakeprogressinthedesignofnuclear-pow-eredmerchantships(MandraandOvcina,Offshore

Energy,2023).MajorshipbuildingcompaniesinSouthKoreahavetakenseveralinitiativesthatdemonstrate

theirintentionsandexpertiseinthefieldofmerchantnuclearshipping(WorldNuclearNews,2025;Nauti-

calVoice,2025).Additionally,asdescribedinthenextchapter,severalreactormanufacturersinothercoun-triesareexploringhowtheirtechnologycanbeutilizedinmerchantshipping.

Acentralcomponentofallfuturedevelopmentsinmar-itimenuclearpropulsionwillbethenuclearreactors,

anintegratedpartofacomprehensivetechnological

systemknownasthenuclearfuelcycle.Beforeconsider-ingthetechnical,commercial,andregulatoryaspectsofmaritimenuclearpropulsion,thisfuelcycleisdescribedbelow,togetherwiththemostrelevantexperiences

andtechnicaldatafromtheveryfirstnuclearmerchantvessels.

2.1Themaritimenuclearfuelcycle-inperspective

Historicalexperiencessuggestthat,intheearlystages

ofmaritimenucleardevelopment,conventionalPWR

technology–water-cooledlikemostland-basedreac-

tors–wasthepreferredchoicefornavalvesselsand

otherexploratoryprojects.Savannah,enteringservicein1962,demonstratingthe-thenUSPresidentEisenhower's'AtomsforPeace'initiative,wasthefirstevernuclear-pow-eredcargo-passengership.ThiswaslaterfollowedbytheGermanOttoHahnandtheJapaneseMutsu,allthreeves-selsusingPWR-typereactors(SchøyenandSteger-Jen-

sen,2017).

Followingtheinitialphaseofthe1950sand60s–anerathatusheredintheso-callednuclearage,includingthelaunchofthefirstnuclear-poweredships-theexpansionofnuclearenergylevelledoffinthe1980sand90s,bothintermsofnumberofplantsandenergygenerated,withonlyRussiacontinuingtocommissionnuclear-poweredvesselsforcivilianuse.

FIGURE2-1

Themaritimenuclearfuelcycle(uranium-based)

Thefrontend-part1:

Mining/conversion/

enrichment/fuel

fabrication

The

backend(b)-

part3:

Disposal

Thepower

generation-

part2:

Thereactor

Continueduse

inanotherfacility

The

backend(a)-

part3:

Storage

©DNV2025Source:WorldNuclearAssociation,2025

Maritimenuclearpropulsion

10

RegardingthenowdecommissionedexploratoryvesselsfromtheUS,Germany,andJapan,theland-basedfuel

cyclewasusedwithsomeadaptationsforuseatsea.

Althoughmaritimeapplicationshavedistinctrequire-mentsforfuelandsupportinginfrastructure,noneofthesecountriesestablishedatrulydedicatedmaritimefuelcycleatthatstage.

Theprincipalelementsofamaritimefuelcycleareout-

linedinFigure2-1,traditionallydividedintoa'frontend'(activitiesbeforethereactor,suchasfuelproduction)anda'backend'(post-usemanagement,includingpotentialreprocessingandfinaldisposalofwasteproductsthat

cannotbereused).

Industrially,theinitialstagesofthemaritimenuclearfuelcycle–suchasminingandmilling–areidenticaltothoseusedforland-basedreactors.However,fuelproduc-

tionprocesses,includingqualificationandfabrication,

typicallyneedtobetailoredtothespecificreactortypeanditsintendedmaritimeapplication.Inthelongerterm,themaritimenuclearfuelcyclewilldivergesignificantly

fromitsland-basedcounterpart,withshipyardsandportsemergingaskeyphysicalandlogisticaldifferentiators.

TheonlycountrywhichhaspursuedamaritimefuelcycleonanindustrialscaleisRussia.Tennuclear-powered

shipshavebeenconstructed–allpartoftheRussian

icebreakerfleet,operatingoutofapermanentbaseinMurmansk–inadditiontoonefloatingpowerplant,cur-rentlyinoperationinPevek,intheRussianfareast.Theicebreakerfleet,formallyownedbytheMurmanskShip-pingCompany,hasbeenusedprimarilybytheRussianGovernmentformanyyears.

2.1.1Thefrontend-thefueltechnology

Fuelisthemostfundamentalcomponentofanuclear

system,containingthefissilematerialwhichprovidestheenergyneeded.Thefissilematerialinthefuelcanbeauraniumisotope-uranium-235(U-235)oruranium-233

(U-233)–orplutonium-239(Pu-239),asdescribedinFig-ure2-2.U-235isfissile,andtheonlyfissileisotopefoundinnature,whileU-233canbemade(produced)inareac-torfromthorium-232(Th-232).Mindfulofthedifferencefromfissilematerials,Th-232isthereforecalled'fertile',asdescribedinFigure2-3.Thereareotherimportant

groupsofmaterial;U-238,likeTh-232,isfertilebecauseitcanbeconvertedintothefissileisotopePu-239by

absorbingneutrons.Uraniumore,whichismined,con-tainsonly0.7%U-235,whichiswhynuclearfuelisusuallyenrichedtoahigherproportionofU-235–3-5%U-235,i.e.anincreasedenrichmentlevel.

Forcivilianpurposes,fuelwithanenrichmentlevelbelow20%istheonlyoption,ashigherlevelsareconsideredanunacceptableproliferationrisk.Nuclearfuelforcommer-cialland-basedpowerplantsisoftenreferredtoaslow-en-richeduranium(LEU),whichindicatesanenrichmentlevelofabout3%to5%.Incontrast,somecountries,suchastheUS,onlyusefuelenrichedupto90%wherecompactness

FIGURE2-2

Themostrelevantfissileisotopesfornuclearfuel

FISSILENUCLEI

Neutron

Neutron

Neutron

©DNV2025

+

+

+

233U

235U

239Pu

Fission

reaction

Fission

reaction

Fission

reaction

isbeneficialorpotentiallydecisiveforthepurposeofthefacility,asfortheirmilitaryvessels.

Sincehigherenrichmentcanleadtomorecompactcores,aformofHALEU(High-AssayLow-EnrichedUranium)is

astartingpointformanyofthenewfueltypesforcandi-datecivilianmarinereactors.Whilehigherenrichment

canoffersignificantoperationaladvantages,italsoraisesconcernsaroundcostandsecurityofsupply.Fuelquali-ficationcanalsobeachallenge,especiallyiftheaimistousefuelenrichedtomorethanthe3%to5%U-235.

TheRussiancaseisalsoimportanttoillustratetheroleofenrichmentinnuclearfuel.RussiancargoshipSevmorput,commissionedin1988,reportedlyused90%enriched

fuel,althoughthecostofthisremainsunknown

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论