版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
WHENTRUSTMATTERS
DNV
MARITIMENUCLEARPROPULSION
Technologies,commercialviability,andregulatorychallengesfornuclear-poweredvessels
WHITEPAPER
Maritimenuclearpropulsion
Contents
Foreword3
Executivesummary4
1
.Introduction
6
2
.Civilianmaritimenuclearpropulsion:Backagain?
8
2.1Themaritimenuclearfuelcycle–inperspective9
2.2Arenon-civilianmarinenuclearvesselsrelevant?13
3
.Civiliannuclearpropulsiontechnologyreadiness14
3.1Whatarethepreferredproperties?15
3.2Candidatetechnologiesandprojects17
4
.Internationalandnationalagreementsandregulations20
4.1Existingregulatoryframeworks23
4.2Regulatoryroadmaps–themaritime-nuclearregulatorynexus24
5.Businessmodelsandcosts28
5.1Howtooperatemaritimenuclearinstallations?30
5.2Whatdoesnuclearpropulsioncost?31
6.Simulatingnuclearpropulsioninmerchantshipping36
Annex:Investmentassumptionsfornuclearandconventionalvessels40
Listofabbreviations42
References43
Projectteam
Disclaimer
Independence,impartiality,andadvisorylimitations
ThisdocumentcontainscontentprovidedbyDNV.Pleasenotethefollowing:Ethicalsafeguards
Tomaintainintegrityandimpartialityessentialtoitsthird-partyroles,DNVperformsinitialconflictof-interestassessmentsbeforeengaginginadvisoryservices.
Priorityofroles
ThisreportisgeneratedbyDNVinitsadvisorycapacity,subsequenttocon-
flict-of-interestassessments.ItisseparatefromDNV’sresponsibilitiesasathird-
partyassuranceprovider.Whereoverlapexists,assuranceactivitiesconductedbyDNVwillbeindependentandtakeprecedenceovertheadvisoryservicesrendered.Futureassurancelimitation
ThecontentinthisdocumentwillnotobligateorinfluenceDNV’sindependentandimpartialjudgementinanyfuturethird-partyassuranceactivitieswithDNV.
Compliancereview
DNV’scompliancewithethicalandindustrystandardsintheseparationofDNV’srolesissubjecttoperiodicexternalreviews.
2
OleChristenReistad,EirikOvrum,ErikStensrud,AnneSophieSagbakkenNess
Photocredits:
Adobe:7,22,27,41;ElenaDider,CCBY-SA4.0,viaWikimediaCommons:34;EltonLord/Atomic
EnergyCommission,Publicdomain,viaWiki-
mediaCommons:13;HendrikBrinks:31;Mick
Tully:2;Shutterstock/Tawansak:1;Shutterstock/
StockStudioAerials:19
Authors
Maritimenuclearpropulsion
FOREWORD
Asthedrivefordecarbonizationbecomesmoreurgent,theworldstandsinneedofsolutionsthatcanmeetthemoment.Thisextendstoshipping–anindustrywhich
providesthebackbonetoworldtradebutwhereambi-tiousdecarbonizationtargetshavebeensetandincreas-inglyproactiveregulationsarebeingimplemented.
Decarbonizationisnolongeradistantambitionbutan
immediatenecessity,anobligation,andaformallyagreedobjective.Everyviablepathwaymust,therefore,be
carefullyconsidered,includingthosepreviouslydeemedimprobable.
Nuclearpropulsion,onceregardedasadistantprospect,isnowunderactiveconsiderationasarealoptionforthecommercialmaritimefleet.Shipyardsandshipowners
areexploringitspotentialandweighingthepromiseofvirtuallyemission-freepoweragainstthecomplexityofintroducingsuchatransformativetechnologyintocom-mercialfleets.
Thistechnologycarriesinherentrisks.Itsacceptance
willdependnotonlyontechnicalperformancebutalsoontheconfidenceofthepublicitserves.Inthiscontext,independentandcompetentassurancebecomesindis-pensable.Itisthemechanismbywhichrisksareman-
aged,trustisbuilt,andcredibilityisearned.Assuranceisnotsimplyasafeguard–itisanenablerofprogress.
Themaritimesectorbenefitsfromalong-established
systemofclassificationsocietiesthatharmonizetechnicalrules,provideindependentverification,andbridgethe
gapbetweenregulationandoperation.Thisframework
enablesthedevelopmentandassessmentofnewtechnol-ogies,includingnuclearpropulsion,withinacoherentandinternationallyrecognizedassurancestructure.
Nocomparablesystemexistsintheland-basednuclearsectors,whereregulatoryresponsibilitiesarefragmentedandprimarilynationallydefined.Theexperienceand
institutionalframeworksofthemaritimeclassification
systemthereforeofferauniquefoundationforenablingciviliannuclearpropulsion–creatingamodelofharmo-nizedoversightthatcouldinspirebroaderapproachestoinnovationinotherhigh-risk,high-valuetechnologies.
Thisreportexploresthetechnologies,commercialvia-
bility,andregulatorychallengesthatframethefutureof
nuclearpropulsion.Itseekstoprovideclarityinacomplexfieldandtosupportinformeddecisionsonwhether,andhow,thisoptioncanplayaresponsibleroleinshapingthefutureofmaritimetransport.
Asthemaritimeindustrynavigatesthecomplexitiesof
decarbonization,nuclearpropulsionpresentsbotha
formidablechallengeandatransformativeopportunity.
Whetherthistechnologybecomesacornerstoneoffuturefleetswilldependonourcollectiveabilitytomanageitsrisks,earnpublictrust,andestablishrobustassurance
frameworks.
Thisreportaimstoequipstakeholderswiththeinsightsneededtoevaluatethisoptionresponsibly,toinnovate
withintegrity,andtoshapeasustainablefutureforglobalshipping.
OleChristenReistad
SeniorPrincipalResearcher
DNV
3
Maritimenuclearpropulsion
4
EXECUTIVESUMMARY
Astheshippingindustryfacesmountingfinancialand
regulatorypressurestodecarbonize,nuclearpropulsionisincreasinglyviewedasapotentialsolution,offeringthepromiseofstable,predictableenergycosts,enhanced
operationalflexibility,andreducedrelianceontraditionalbunkeringinfrastructure.
Whilenocivilianmaritimenuclearfacilitieshavebeen
commissionedinoverfourdecades,shiftingenvironmen-tal,technological,regulatory,andcommercialdynamicsarereignitinginterestsandhighlightingthetransforma-tiverolethatnuclearpowercouldplayinthemaritime
industryoverthecomingdecades.Thiswhitepaper
describesthecurrentstateofplayofnuclearmaritimepropulsionandemphasizestheneedfortechnologicalinnovation,regulatoryclarity,andeconomicfeasibility.
Althoughnuclearpropulsionanditssupportinginfra-
structurearenotyetcommerciallyviable,pastoperatingexperienceoffersvaluableinsightsforthepathahead.
Almostallpreviouscommercialprojects–vesselssuchasSavannah,OttoHahn,andMutsu–operatedusingpres-surizedwaterreactors(PWRs),whichrequiredextensivemonitoringandactivesafetysystemstomanagetran-
sients.Thisreactortypetypicallydemandsalarge,highlyskilledcrew,increasingoperationalcostsandposing
commercialchallengesforshipowners.
Manymilitaryvesselshavealsobeendeployedwith
nuclearpropulsiontechnology.However,theirrelevancetofuturecommercialprojectsisconsideredlimited,duetothedifferingtechnologicalandcommercialrealitiesofthesevessels.
Withtheseconsiderationsinmind,thiswhitepaper
outlinesthepreferredcharacteristicsofreactorconceptscurrentlybeingdevelopedformarineuse.Allmaritime
nucleartechnologieswilldifferfromland-basedequiv-
alentsduetosomekeycharacteristics,suchasmobility,exposuretoharshseaconditions,andoperationalprofile.Further,maritimeinstallationswillvarysignificantly
dependingontheirpurpose–propulsion(nuclear-pow-eredships,NPSs)orpowergeneration(floatingnuclearpowerplants,FNPPs.
Designchoicessuchassingleversusdualreactorsinvolvetrade-offsbetweencost,space,reliability,andpower
availability.Smaller,standardizedreactorsmayoffer
advantagesformerchantshipping,especiallyifthey
featurepassivesafetysystemsandminimalcrewrequire-ments.Low-pressuresystemsandGenerationIVorheat-pipereactorscouldbepreferredfortheirinherentsafetyandreducedcomplexitycomparedtotraditionalPWRs.
Marinereactorsmustbecompactanddesignedfor
infrequentrefuelling–ideallyalignedwithotherrequiredmaintenanceactivitiessuchasdry-dockingtominimize
impactsonshipavailability.Refuellinglogisticsarecon-finedtospecializedports,andglobalnuclearfuelsupplychainsfacepressureduetogeopoliticalshifts.Thereac-tor’spurpose–mechanicalpropulsionorelectricpower–determinesthesystemconfiguration,withsteamturbinesornuclear-electricsetupsofferingdifferentbenefits.
Higherfuelenrichmentlevelsmaybenecessarytomeetoperationaldemands,andonlinerefuellingcouldreshapecurrentlimitations.
Ultimately,reactortechnologyselectionhingesonbalanc-ingsafety,efficiency,andoperationalfeasibility.Severalprojectsindifferentcountriesarealreadyunderwaywithdifferingapproachestofuel,coolant,andsafety.
Translatingtheseconceptsintocommercialrealityrequiresmorethantechnicalinnovation,however.
Acost-effectiveandprovennuclearfuelcycle,tailored
formaritimeuse,mustbedevelopedbytheindustry.Thisincludesestablishingclearlydefinedrolesandresponsi-bilitiesacrossthesupplychain,fromfuelproductionandreactorintegrationtoloading,exchange,anddisposal.
Crucially,storageanddisposalofspentnuclearfuelarefundamentaltothefunctionalityandcredibilityofthe
supplychain.Reactordesignandfueltypewilldirectlyinfluencetheserequirements,andthesefactorsmust
beaddressedbeforeanyoperatinglicenseisgranted.Aspartofthis,provisionsforthewholemaritimefuel
cycle–includinglong-termwastemanagement–are
essential,notonlyforregulatorycompliancebutalsoforadvancingpublicacceptance.
Astechnologyandsupplychainsevolve,theymustberigorouslytestedundermaritimeconditions.Duetothehigh-riskpotentialandtheneedforpublicacceptance,thisincludesverificationandassurancesofmajorcom-
Maritimenuclearpropulsion
5
ponents,suchasreactorsystems,fuellogistics,andportinfrastructuretoensuresafeandefficientinstallation,
operation,andmaintenanceatsea.
Thedevelopmentofacommercialmaritimenuclearindus-tryalsoneedstobesupportedbyapredictableandinter-nationallyacceptedregulatoryframework.OrganizationssuchastheIMOandIAEAmustleadeffortstoestablish
standardsforfuelmanagement,shipconstruction,and
operationalprotocols.Classificationsocietieswillplayacriticalroleinenablingglobaladoption,helpingtoover-comethefragmentednatureoftheland-basednuclear
industryandfosteringastandardizedmaritimeapproach.
Theregulatorylandscapefornuclearshippingwilllikely
exceedwhatthemaritimeindustryisaccustomedto,
openingthedoortomultiplefuturesystemconfigura-
tions.Byidentifyingkeyactors,theirmandates,andthe
needforcoordination,regulatoryroadmapsoutlinedin
thiswhitepaperofferessentialguidance.Asrolesmulti-ply,clarifyinginterfacesbecomesincreasinglyimportant–somethingtheseroadmapshelpaddressbymappingkeyinterdependencies.
Safety,securityandnon-proliferationremainparamount.Futureinstallationsmustbedesignedtowithstandcolli-sions,groundings,andexternalthreatssuchassabotageorpiracy.Remotemonitoringandadvancedcommuni-cationcapabilitieswillbeessential,alongwithrigorouscybersecuritymeasures.
Technologicaladvancements,particularlyindigitalization–encompassingautomationandcommunication–are
helpingtoovercomelongstandingchallenges.These
innovationsmayenhancesafety,reducecosts,andsup-porttransparentmonitoringandcybersecurity,factorswhichareallcriticalforbothpublicconfidenceandinter-nationaloversight.
Thesuccessoffuturemaritimenuclearinstallationswillalsodependonthedevelopmentofcompellingbusinessmodels.Thesemustreflectthecommercialrealitiesof
shippingandprovideaclearunderstandingoftotalcostofownership,especiallyacrosstheentirefuelcycle.
Cost-competitivenesscouldbesignificantlyenhanced
throughmodularandstandardizedapproaches,which
streamlineconstruction,simplifymaintenance,provide
independentassurance,andfacilitateregulatoryapprovalacrossjurisdictions.
Progressisbeingmade.TheintegrationofGenerationIII+andIVreactortechnologies,alongwiththeriseofsmall
modularreactors(SMRs),mayenableshorterconstruc-
tiontimes,greaterstandardization,andimprovedsafety.Thesedevelopmentsmayalsosupportreducedcrew
requirementsandoperationalefficiencies,strengtheningthebusinesscasefornuclearpropulsion.
Reactorcostsareakeyfactor.DNVcasestudiespre-
sentedinthispapershowthatnuclearcanoutperform
othertechnologiesunderbothlowandhighfuelprice
scenarios.AreactorcostbelowUSD18,000/kWcouldbecompetitiveiffulldecarbonizationisachievedby2050,whilecostsbelowUSD8,000/kWcouldbeviableeven
withoutfulldecarbonization.
Realizingthepotentialofnuclearpropulsioninmaritimerequiresmorethantechnologicalreadiness.Itdemandscoordinatedglobalaction,involvingawiderangeof
actorsacrossthemaritimeindustry,regulators,andsoci-etyingeneral.
Withstrategicinvestmentandinternationalcollabora-
tion,nuclearenergycouldbecomeacornerstoneofthemaritimeenergytransition,deliveringsafe,efficient,andzero-emissionpropulsionfortheglobalfleet.
FIGURE0-1
Transferofheatfornuclearreactor
SteamTurbineGear
Fuel
Boiler
Oil,LNG
Conventional
propulsionsystem(here:steam)
Water
Condenser
Heat
Primarycircuit
Secondarycircuit
TurbineGear
Steam
Nuclear
propulsionsystem
Steam
Reactor
generator
Water
Condenser
©DNV2025
Heat
Maritimenuclearpropulsion
1
INTRODUCTION
6
Maritimenuclearpropulsion
Currently,nocommercialnuclearfacilitiesareinopera-
tiononcivilianshipsoroffshoreplatformsanywherein
theworld.Yet,fromaneconomicpointofview,several
compellingargumentssupporttheirpotential,notablylowandpredictableenergycosts,albeitwithhighinvestmentcosts.Asthisisatechnologythatproducesnoemissions,theclimateandenvironmentalbenefitsarealsoclear
(DNV,2023)(DNV,2024).Fromanoperationalperspective,nuclearpropulsionenhancesflexibilitybymakinghigherspeedseconomicallyfeasible,evenforlargervessels,
whilethereducedneedforbunkeringinfrastructurecouldhaveamajorimpactontheglobalfleet.
Thisraisesthepivotalquestion:howmighttheseoppor-tunitiesberealizedacrosstheworld?
Theaimofthispaperistodescribethestateofplayof
internationalcommercialactivitiesutilizingnuclearfissionforpropulsionorpowergenerationatsea,andtoprovideabasisfordevelopingastrategytocombinetwocom-
mercialindustrieswithlittlehistoricalcooperation.
Thepaperisdividedintofourparts.
First,inChapter2wedescribethehistoryofmaritime
nuclearpropulsion,providingabriefoverviewofexperi-enceswithnuclear-poweredcivilianmerchantshipsandotherrelevantactivities.Inthischapter,wealsointroducethemaritimefuelcycleandoutlinetheprinciplekey
elementsthatarerelevanttothis,includingthe‘frontend‘(activitiesbeforethereactor,suchasfuelproductionanddelivery)and‘backend‘(post-usemanagement,includingpotentialreprocessingandfinaldisposalofwasteprod-uctsthatcannotbereused).
Secondly,inChapter3,weexaminethereadinessof
civiliannuclearpropulsiontechnologies,comparingthemtoland-basedcounterparts,whileexaminingpreferred
propertiesandcandidatetechnologies,suchaspressur-izedwaterreactors(PWRs),smallmodularreactors(SMRs),moltensaltreactors,lead-cooledreactors,high-tempera-turegasreactors,andheat-pipereactors.
Therealizationofcommercialnuclearpropulsionisalso
dependentonnon-technologicalfactors,andinthethirdpartofthepaper,inChapter4,weprovideadetailed
overviewoftheregulatoryframeworksthatwillbe
requiredforafunctioningnuclearpropulsionindustrytobeinternationallyrecognized,andtoenjoyahighlevelofpublicacceptance.Thiswillinvolvemultiplenationalandinternationalactorsandwilldependonclosecooperationbetweenallparties.
Finally,thesuccessfulemergenceofacommercialmari-timenuclearpropulsionindustrywillhingeonviablebusi-nessmodelsandcosts,andthesefactorsareanalysed
inChapter5.Businessmodelsmustaddressdifferent
factorssuchasownership,leasing,crewsize,andsup-ply-chainmanagement,whilecostcompetitivenesswilldependontheabilityoftheindustrytoimplementstan-dardization,massproduction,andefficiencymanning.
Thesefactorsareallclarifiedthroughadetailedcase
study,presentedinChapter6,wherewesimulatethe
potentialcostlevelsmarinenuclearreactorswillneed
toachievefornuclearpropulsiontoberelevantforthemerchantfleet,andhowthismayaffecttheintroductionofthetechnologyininternationalshipping.
7
Maritimenuclearpropulsion
2
CIVILIANMARITIMENUCLEAR
PROPULSION:BACKAGAIN?
Highlights
–Earlymerchantnuclearshipsdemonstratedtechnicalfeasibilitybutlackedcommercialsuccess,andnocivilianmaritimenuclearfacilitieshavebeencommissionedformorethan40years.
–Themaritimenuclearfuelcycleencompassesallstagesfrom'frontend'to'backend'andincludesuraniummining,enrichment,fuelfabrication,reactoroperation,andspentfuelmanagement.
–Maritimeinfrastructuremustadapttothedemandsofthemaritimefuelscycle,withspecializedyardsandportsfornuclearoperations.
–Whilemuchexperiencecanbegleanedfromnuclear-propelledvesselsformilitarypurposes,theirrelevancetofuturecommercialmaritimenuclearinstallationsislimited
8
Maritimenuclearpropulsion
9
Shipping'sexperiencewithnuclear-poweredvesselsremainslimited.
Whilesomelargecountries,abovealltheUS,United
Kingdom,France,Russia,andChina,todayutilizenuclearenergyextensivelyinboththecivilianandmilitarysec-
tors,thedevelopmentofbothonshorepowergenerationandmaritimenuclearpropulsiondidnotproceedas
expectedatthebeginningofthenuclearage.ApartfromexploratorytestsinRussia,nocivilianmaritimenuclear
facilitieshavebeencommissionedformorethan40years.
However,nuclearisre-emergingasanoptionforfos-
sil-freeenergy.Thishasalsoextendedtothemaritime
industry,wherenuclearenergyhasgainedrenewedinter-est,bothasameansofpowergenerationonsea-basedplatformsandfornuclearpropulsionsystems(DNV,2023)(DNV,2024).
Therearenumerousexamplestodayofnewactors
demonstratinginterestinnuclearenergyinshipping.
TheUKtooktheinitiativein2022toaccedetothe
NuclearCode(seeChapter4),oneofthefewrelevant
internationallegalinstruments.(MandraandOvcina,
2022).Chinaisdescribedasapioneerintheapplicationofnucleartechnologytodecarbonizeshipping(Wang
andQuiwen,2025),andtheChineseshipbuildingcom-panyJiangnanShipbuildingGrouphasdemonstrateditseffortstomakeprogressinthedesignofnuclear-pow-eredmerchantships(MandraandOvcina,Offshore
Energy,2023).MajorshipbuildingcompaniesinSouthKoreahavetakenseveralinitiativesthatdemonstrate
theirintentionsandexpertiseinthefieldofmerchantnuclearshipping(WorldNuclearNews,2025;Nauti-
calVoice,2025).Additionally,asdescribedinthenextchapter,severalreactormanufacturersinothercoun-triesareexploringhowtheirtechnologycanbeutilizedinmerchantshipping.
Acentralcomponentofallfuturedevelopmentsinmar-itimenuclearpropulsionwillbethenuclearreactors,
anintegratedpartofacomprehensivetechnological
systemknownasthenuclearfuelcycle.Beforeconsider-ingthetechnical,commercial,andregulatoryaspectsofmaritimenuclearpropulsion,thisfuelcycleisdescribedbelow,togetherwiththemostrelevantexperiences
andtechnicaldatafromtheveryfirstnuclearmerchantvessels.
2.1Themaritimenuclearfuelcycle-inperspective
Historicalexperiencessuggestthat,intheearlystages
ofmaritimenucleardevelopment,conventionalPWR
technology–water-cooledlikemostland-basedreac-
tors–wasthepreferredchoicefornavalvesselsand
otherexploratoryprojects.Savannah,enteringservicein1962,demonstratingthe-thenUSPresidentEisenhower's'AtomsforPeace'initiative,wasthefirstevernuclear-pow-eredcargo-passengership.ThiswaslaterfollowedbytheGermanOttoHahnandtheJapaneseMutsu,allthreeves-selsusingPWR-typereactors(SchøyenandSteger-Jen-
sen,2017).
Followingtheinitialphaseofthe1950sand60s–anerathatusheredintheso-callednuclearage,includingthelaunchofthefirstnuclear-poweredships-theexpansionofnuclearenergylevelledoffinthe1980sand90s,bothintermsofnumberofplantsandenergygenerated,withonlyRussiacontinuingtocommissionnuclear-poweredvesselsforcivilianuse.
FIGURE2-1
Themaritimenuclearfuelcycle(uranium-based)
Thefrontend-part1:
Mining/conversion/
enrichment/fuel
fabrication
The
backend(b)-
part3:
Disposal
Thepower
generation-
part2:
Thereactor
Continueduse
inanotherfacility
The
backend(a)-
part3:
Storage
©DNV2025Source:WorldNuclearAssociation,2025
Maritimenuclearpropulsion
10
RegardingthenowdecommissionedexploratoryvesselsfromtheUS,Germany,andJapan,theland-basedfuel
cyclewasusedwithsomeadaptationsforuseatsea.
Althoughmaritimeapplicationshavedistinctrequire-mentsforfuelandsupportinginfrastructure,noneofthesecountriesestablishedatrulydedicatedmaritimefuelcycleatthatstage.
Theprincipalelementsofamaritimefuelcycleareout-
linedinFigure2-1,traditionallydividedintoa'frontend'(activitiesbeforethereactor,suchasfuelproduction)anda'backend'(post-usemanagement,includingpotentialreprocessingandfinaldisposalofwasteproductsthat
cannotbereused).
Industrially,theinitialstagesofthemaritimenuclearfuelcycle–suchasminingandmilling–areidenticaltothoseusedforland-basedreactors.However,fuelproduc-
tionprocesses,includingqualificationandfabrication,
typicallyneedtobetailoredtothespecificreactortypeanditsintendedmaritimeapplication.Inthelongerterm,themaritimenuclearfuelcyclewilldivergesignificantly
fromitsland-basedcounterpart,withshipyardsandportsemergingaskeyphysicalandlogisticaldifferentiators.
TheonlycountrywhichhaspursuedamaritimefuelcycleonanindustrialscaleisRussia.Tennuclear-powered
shipshavebeenconstructed–allpartoftheRussian
icebreakerfleet,operatingoutofapermanentbaseinMurmansk–inadditiontoonefloatingpowerplant,cur-rentlyinoperationinPevek,intheRussianfareast.Theicebreakerfleet,formallyownedbytheMurmanskShip-pingCompany,hasbeenusedprimarilybytheRussianGovernmentformanyyears.
2.1.1Thefrontend-thefueltechnology
Fuelisthemostfundamentalcomponentofanuclear
system,containingthefissilematerialwhichprovidestheenergyneeded.Thefissilematerialinthefuelcanbeauraniumisotope-uranium-235(U-235)oruranium-233
(U-233)–orplutonium-239(Pu-239),asdescribedinFig-ure2-2.U-235isfissile,andtheonlyfissileisotopefoundinnature,whileU-233canbemade(produced)inareac-torfromthorium-232(Th-232).Mindfulofthedifferencefromfissilematerials,Th-232isthereforecalled'fertile',asdescribedinFigure2-3.Thereareotherimportant
groupsofmaterial;U-238,likeTh-232,isfertilebecauseitcanbeconvertedintothefissileisotopePu-239by
absorbingneutrons.Uraniumore,whichismined,con-tainsonly0.7%U-235,whichiswhynuclearfuelisusuallyenrichedtoahigherproportionofU-235–3-5%U-235,i.e.anincreasedenrichmentlevel.
Forcivilianpurposes,fuelwithanenrichmentlevelbelow20%istheonlyoption,ashigherlevelsareconsideredanunacceptableproliferationrisk.Nuclearfuelforcommer-cialland-basedpowerplantsisoftenreferredtoaslow-en-richeduranium(LEU),whichindicatesanenrichmentlevelofabout3%to5%.Incontrast,somecountries,suchastheUS,onlyusefuelenrichedupto90%wherecompactness
FIGURE2-2
Themostrelevantfissileisotopesfornuclearfuel
FISSILENUCLEI
Neutron
Neutron
Neutron
©DNV2025
+
+
+
233U
235U
239Pu
Fission
reaction
Fission
reaction
Fission
reaction
isbeneficialorpotentiallydecisiveforthepurposeofthefacility,asfortheirmilitaryvessels.
Sincehigherenrichmentcanleadtomorecompactcores,aformofHALEU(High-AssayLow-EnrichedUranium)is
astartingpointformanyofthenewfueltypesforcandi-datecivilianmarinereactors.Whilehigherenrichment
canoffersignificantoperationaladvantages,italsoraisesconcernsaroundcostandsecurityofsupply.Fuelquali-ficationcanalsobeachallenge,especiallyiftheaimistousefuelenrichedtomorethanthe3%to5%U-235.
TheRussiancaseisalsoimportanttoillustratetheroleofenrichmentinnuclearfuel.RussiancargoshipSevmorput,commissionedin1988,reportedlyused90%enriched
fuel,althoughthecostofthisremainsunknown
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北省十堰市普通高中教联体2025-2026学年高一上学期12月月考化学试题
- 跨境电商海外仓2025年仓储安全合同协议
- 口罩生产供应协议2025年仲裁版
- 2025年NFT确权虚拟土地租赁协议
- 酒店保洁合同(2025年客房消毒)
- 邹城社工面试题及答案
- 事业药学面试题及答案
- 深度解析(2026)《GBT 39141.2-2020无机和蓝宝石手表玻璃 第2部分:用胶粘或密封圈装到表壳上的配合》(2026年)深度解析
- 深度解析(2026)《GBT 34290-2017公共体育设施 室外健身设施的配置与管理》
- 中国风西江月茶词
- 土地整治项目课件
- 2025河北邯郸市武安市正通食品药品检验技术服务中心有限公司招聘食品检测专业技术人员4人参考模拟试题及答案解析
- 2025年度医务科工作总结报告
- 广东省农作物植保员职业技能竞赛考试题库含答案
- 中国铁路昆明局集团有限公司招聘笔试真题2024
- 石料供应应急预案
- 烟草专卖管理师二级专业能力试卷及答案
- 第1课 了解和评估影响健康的因素说课稿-2025-2026学年初中体育与健康科学版2024七年级全一册-科学版2024
- 2025版顺丰快递快递业务合同修订版
- 2025年黑龙江人力资源管理师考试真题及答案
- 2025-2030中国室内定位技术应用场景与市场规模测算报告
评论
0/150
提交评论