版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(完整版)苏教七年级下册期末数学重点初中真题及解析一、选择题1.下面的计算正确的是()A.x3•x3=2x3 B.(x3)2=x5 C.(6xy)2=12x2y2 D.(﹣x)4÷(﹣x)2=x22.如图,直线a,b,c被射线l和m所截,则下列关系正确的是()A.∠1与∠2是对顶角 B.∠1与∠3是同旁内角C.∠3与∠4是同位角 D.∠2与∠3是内错角3.由方程组消去m,可得x与y的关系式是()A.2x﹣5y=5 B.2x+5y=﹣1 C.﹣2x+5y=5 D.4x﹣y=134.已知a<b,则下列关系式不成立的是()A.4a<4b B.4a4b C.a+4<b+4 D.a-4<b-45.若关于的不等式的解集是,则的取值范围是()A. B. C. D.6.下列命题中,真命题的个数为()(1)如果,那么a>b;(2)对顶角相等;(3)四边形的内角和为;(4)平行于同一条直线的两条直线平行;A.1个 B.2个 C.3个 D.4个7.有依次排列的三个数:6,2,8,先将任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新的数串:6,-4,2,6,8,这称为第一次操作,第二次操作后同样可以产生一个新数串:6,-10,-4,6,2,4,6,2,8,继续操作下去,问:第2021次操作后所产生的新数串的所有数之和是()A.4054 B.4056 C.4058 D.40608.如图,把纸片沿折叠,当点A落在四边形的外部时,则与和之间有一种数量关系始终保持不变,请试着找一找这个结论,你发现的结论是()A. B.C. D.二、填空题9.计算:的结果是________.10.以下四个命题:①在同一平面内,过一点有且只有一条直线与已知直线垂直;②两条直线被第三条直线所截,同旁内角互补;③数轴上的每一个点都表示一个实数;④如果点的坐标满足,那么点一定在第二象限.其中正确命题的序号为___.11.若一个多边形的每个外角均为,则这个多边形的边数为__________.12.如图,有三种卡片,其中边长为的正方形卡片1张,长为、宽为的长方形卡片4张,边长为的正方形卡片4张,用这9张卡片刚好能拼成一个大正方形,则这个大正方形的边长为_____.13.若方程组的解中,则k等于_____.14.如图,在三角形ABC中,AC=5,BC=6,BC边上的高AD=4,若点P在边AC上(不与点A,C重合)移动,则线段BP最短时的长为_________________.15.如果等腰三角形的两条边分别为5厘米和10厘米,那么这个等腰三角形的周长是_______.16.如图,四边形ABCD中,E,F,G,H依次是各边中点,O是形内一点,若四边形AEOH、四边形BFOE、四边形CGOF,的面积分别为6、8、10,则四边形DHOG的面积为________.17.计算:(1);(2);(3);(4)(a+2b-3c)(a-2b+3c)18.因式分解:(1)2(x+2)2+8(x+2)+8;(2)﹣2m4+32m².19.解方程组(1)(2)20.解不等式组:,并写出该不等式组的整数解.三、解答题21.如图,,,平分.(1)与的位置关系如何?为什么?(2)平分吗?为什么?22.国庆期间,为了满足百姓的消费需求,某商店计划用170000元购进一批家电,这批家电的进价和售价如表:类别彩电冰箱洗衣机进价(元/台)200016001000售价(元/台)230018001100若在现有资金允许的范围内,购买表中三类家电共100台,其中彩电台数是冰箱台数的2倍,设该商店购买冰箱x台.(1)商店至多可以购买冰箱多少台?(2)购买冰箱多少台时,能使商店销售完这批家电后获得的利润最大?最大利润为多少元?23.规定:二元一次方程有无数组解,每组解记为,称为亮点,将这些亮点连接得到一条直线,称这条直线是亮点的隐线,答下列问题:(1)已知,则是隐线的亮点的是;(2)设是隐线的两个亮点,求方程中的最小的正整数解;(3)已知是实数,且,若是隐线的一个亮点,求隐线中的最大值和最小值的和.24.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN与CD相交于点E,求∠CEN的度数;(3)将图①中的三角板OMN绕点O按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第____________秒时,直线MN恰好与直线CD垂直.(直接写出结果)25.如图1,由线段组成的图形像英文字母,称为“形”.(1)如图1,形中,若,则______;(2)如图2,连接形中两点,若,试探求与的数量关系,并说明理由;(3)如图3,在(2)的条件下,且的延长线与的延长线有交点,当点在线段的延长线上从左向右移动的过程中,直接写出与所有可能的数量关系.【参考答案】一、选择题1.D解析:D【分析】根据幂的运算法则逐项计算判断即可.【详解】解:A.x3•x3=x6,原选项不正确,不符合题意;B.(x3)2=x6,原选项不正确,不符合题意;C.(6xy)2=36x2y2,原选项不正确,不符合题意;D.(﹣x)4÷(﹣x)2=x2,原选项正确,符合题意;故选:D.【点睛】本题考查了幂的运算,解题关键是熟记幂的运算法则,准确进行计算.2.C解析:C【分析】根据对顶角、邻补角、同位角、内错角的定义分别分析即可.【详解】解:A、∠1与∠2是邻补角,故原题说法错误;B、∠1与∠3不是同旁内角,故原题说法错误;C、∠3与∠4是同位角,故原题说法正确;D、∠2与∠3不是内错角,故原题说法错误;故选:C.【点睛】此题主要考查了对顶角、邻补角、内错角和同位角,解题的关键是掌握对顶角、邻补角、内错角和同位角的定义.3.A解析:A【分析】方程组消去m即可得到x与y的关系式.【详解】解:,①×3-②,得2x-5y=5,故选:A.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.B解析:B【分析】根据不等式的性质即可判断.【详解】∵a<b,∴-4a>-4b故B不成立,选B.【点睛】此题主要考查不等式,解题的关键是熟知不等式的性质.5.A解析:A【分析】利用不等式的基本性质求解即可.【详解】解:∵,∴,∵不等式的解集为,∴∴,故选A.【点睛】本题考查不等式的基本性质、不等式的解集,熟练掌握不等式的基本性质的运用,注意符号的变化是解答的关键.6.C解析:C【分析】根据有理数的乘方法则、对顶角相等、多边形的内角和、平行线的判定定理判断即可.【详解】(1)如果,那么|a|>|b|,本命题是假命题;(2)对顶角相等,本命题是真命题;(3)四边形的内角和为360°,本命题是真命题;(4)平行于同一条直线的两条直线平行,本命题是真命题;故选:C.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.C解析:C【分析】首先根据题意,分别求出前三次操作得到的数分别是多少,再求出它们的和各是多少;然后总结出第n次操作:求和结果是16+2n,再把n=2021代入,求出算式的值是多少即可.【详解】解:第一次操作:6,-4,2,6,8,求和结果:18,第二次操作:6,-10,-4,6,2,4,6,2,8,求和结果:20,第三次操作:6,-16,-10,6,-4,10,6,-4,2,2,4,2,6,-4,2,6,8,求和结果:22,……第n次操作:求和结果:16+2n,∴第2021次结果为:16+2×2021=4058.故选:C.【点睛】此题主要考查了有理数加减法的运算方法,以及数字的变化规律,要熟练掌握.8.A解析:A【分析】根据翻折的性质可得,,再利用三角形的内角和定理和三角形的外角性质分别表示出和,然后整理即可得解.【详解】解:如图,由翻折的性质得,,,∴在中,,,∴,∴,整理得,,∴∴.故选:A.【点睛】本题考查了翻折变换的性质,三角形的内角和定理和外角性质,熟记性质并表示出和是解题的关键.二、填空题9.【分析】根据单项式乘单项式的运算法则进行计算求解.【详解】解:=6x5y2,故答案为:6x5y2.【点睛】本题考查单项式乘单项式,掌握相关运算法则准确计算是解题关键.10.①③【分析】依次分析判断即可得到答案.【详解】①在同一平面内,过一点有且只有一条直线与已知直线垂直,故该项正确;②两条平行线被第三条直线所截,同旁内角互补,故该项错误;③数轴上的每一个点都表示一个实数,故该项正确;④如果点的坐标满足,则x与y异号,那么点P在第二或第四象限,故该项错误;故答案为:①③.【点睛】此题考查命题的正确与否,正确掌握各知识点并熟练运用解题是关键.11.8【分析】一个多边形的外角和为360°,而每个外角为45°,进而求出外角的个数,即为多边形的边数.【详解】解:360°÷45°=8,故答案为:8.【点睛】本题考查多边形的外角和,掌握多边形的外角和是360°是解决问题的关键.12.【分析】根据题意列出关系式,分解因式即可得正方形边长.【详解】解:根据题意得:,则这个正方形的边长为,故答案是:;【点睛】此题考查了因式分解的应用,熟练掌握完全平方公式和理解因式分解的方法是解本题的关键.13.2020【分析】将方程组的两个方程相加,可得,再根据,即可得到,进而求出的值.【详解】解:,①②得,,即:,,,故答案为:2020.【点睛】本题考查二元一次方程组的解法,整体代入是求值的常用方法.14.B解析:【分析】根据点到直线的连线中,垂线段最短,得到当BP垂直于AC时,BP的长最小,利用面积法即可求出此时BP的长.【详解】解:根据垂线段最短可知,当BP⊥AC时,BP最短,∵S△ABC=×BC×AD=×AC×BP,∴6×4=5BP,∴PB=,即BP最短时的值为:.故答案为:.【点评】此题考查了垂线段最短,三角形的面积,熟练掌握线段的性质是解本题的关键.15.25cm【分析】分两种情况讨论:当5厘米是腰时或当10厘米是腰时.根据三角形的三边关系,知5,5,10不能组成三角形,应舍去.【详解】解:当5厘米是腰时,则5+5=10,不能组成三角形,应舍解析:25cm【分析】分两种情况讨论:当5厘米是腰时或当10厘米是腰时.根据三角形的三边关系,知5,5,10不能组成三角形,应舍去.【详解】解:当5厘米是腰时,则5+5=10,不能组成三角形,应舍去;当10厘米是腰时,则三角形的周长是5+10×2=25(厘米).故答案为:25cm.【点睛】本题主要考查了三角形的三边关系,即两边之和大于第三边,两边之差小于第三边和等腰三角形的性质,解题的关键是熟练掌握等腰三角形的性质和三角形的三边关系.16.8【分析】连接OC,OB,OA,OD,易证S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,S△OAE=S△OBE,所以S四边形AEOH+S四边形CGOF=S四边形DHOG解析:8【分析】连接OC,OB,OA,OD,易证S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,S△OAE=S△OBE,所以S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,所以可以求出S四边形DHOG.【详解】解:连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,所以S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,∴S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,∵S四边形AEOH=6,S四边形BFOE=8,S四边形CGOF=10,∴6+10=8+S四边形DHOG,解得:S四边形DHOG=8,故答案为:8.【点睛】本题主要考查了三角形面积,解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.17.(1)2;(2);(3);(4).【分析】(1)先算乘方,再算乘法,最后算加减即可;(2)先算积的乘方,再算同底数幂的乘除法即可求解;(3)先根据完全平方公式,平方差公式计算,再合并解析:(1)2;(2);(3);(4).【分析】(1)先算乘方,再算乘法,最后算加减即可;(2)先算积的乘方,再算同底数幂的乘除法即可求解;(3)先根据完全平方公式,平方差公式计算,再合并同类项即可求解;(4)先根据平方差公式进行计算,再根据完全平方公式求出即可.【详解】解:(1)原式=(-2)+4×1=-2+4=2;(2)原式==;(3)原式====;(4)原式====.故答案为(1)2;(2);(3);(4).【点睛】本题考查了整式的混合运算,涉及零指数幂、负整数指数幂、多项式乘法等,能正确根据整式的运算法则进行化简是解题的关键.18.(1)2(x+4)2;(2)﹣2m2(m+4)(m﹣4)【分析】(1)直接提取公因式2,再利用完全平方公式分解因式得出答案;(2)直接提取公因式﹣2m2,再利用平方差公式分解因式得出答案.【解析:(1)2(x+4)2;(2)﹣2m2(m+4)(m﹣4)【分析】(1)直接提取公因式2,再利用完全平方公式分解因式得出答案;(2)直接提取公因式﹣2m2,再利用平方差公式分解因式得出答案.【详解】解:(1)2(x+2)2+8(x+2)+8=2[(x+2)2+4(x+2)+4]=2(x+2+2)2=2(x+4)2;(2)﹣2m4+32m2=﹣2m2(m2﹣16)=﹣2m2(m+4)(m﹣4).【点睛】本题考查了提公因式法及公式法分解因式,解题的关键是正确运用公式.19.(1);(2)【分析】(1)根据加减消元法,即可求解;(2)先化简二元一次方程组,再利用加减消元法,即可求解.【详解】解:(1),①+②得:4x=8,解得:x=2,把x=2代入①得:2解析:(1);(2)【分析】(1)根据加减消元法,即可求解;(2)先化简二元一次方程组,再利用加减消元法,即可求解.【详解】解:(1),①+②得:4x=8,解得:x=2,把x=2代入①得:2-2y=0,解得:y=1,∴方程组的解为:;(2),化简得:,①-②得:-y=-2,解得:y=2,把y=2代入②得:3x-2=4,解得:x=2,∴方程组的解为:.【点睛】本题主要考查解二元一次方程组,熟练掌握加减消元法是解题的关键.20.,整数解为-2,-1,0,1【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分,确定出不等式组的整数解即可.【详解】解:由①得.由②得,不等式组的解集为,则不等式组的整数解为解析:,整数解为-2,-1,0,1【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分,确定出不等式组的整数解即可.【详解】解:由①得.由②得,不等式组的解集为,则不等式组的整数解为-2,-1,0,1.【点睛】此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.三、解答题21.(1)平行,理由见解析;(2)平分,理由见解析【分析】(1)由平行线的性质得到∠C=∠CBE,由此得到∠A=∠CBE,根据平行线的判定即可证得结论;(2)由角平分线的定义得到∠FDA=∠BDA解析:(1)平行,理由见解析;(2)平分,理由见解析【分析】(1)由平行线的性质得到∠C=∠CBE,由此得到∠A=∠CBE,根据平行线的判定即可证得结论;(2)由角平分线的定义得到∠FDA=∠BDA,根据平行线的性质得到∠FDA=∠A=∠CBE,∠ADB=∠CBD,于是得到∠EBC=∠CBD,即可证得结论.【详解】解:(1)平行.理由如下:∵AE∥FC,∴∠C=∠CBE,∵∠A=∠C,∴∠A=∠CBE,∴AD∥BC;(2)平分.理由如下:∵DA平分∠BDF,∴∠FDA=∠BDA,∵AE∥CF,AD∥BC,∴∠FDA=∠A=∠CBE,∠ADB=∠CBD,∴∠EBC=∠CBD,∴BC平分∠DBE.【点睛】本题考查的是平行线的判定与性质,角平分线的定义,熟知平行线的判定理是解答此题的关键.22.(1)26(2)购买26台时最大利润为23000【解析】分析:(1)根据表格中三种家电的进价表示三种家电的总进价,小于等于170000元列出关于x的不等式,根据x为正整数,即可解答;(2)设商解析:(1)26(2)购买26台时最大利润为23000【解析】分析:(1)根据表格中三种家电的进价表示三种家电的总进价,小于等于170000元列出关于x的不等式,根据x为正整数,即可解答;(2)设商店销售完这批家电后获得的利润为y元,则y=(2300-2000)2x+(1800-1600)x+(1100-1000)(100-3x)=500x+10000,结合(1)中x的取值范围,利用一次函数的性质即可解答.详解:(1)根据题意,得:2000⋅2x+1600x+1000(100−3x)⩽170000,解得:x,∵x为正整数,∴x最多为26,答:商店至多可以购买冰箱26台.(2)设商店销售完这批家电后获得的利润为y元,则y=(2300−2000)2x+(1800−1600)x+(1100−1000)(100−3x)=500x+10000,∵k=500>0,∴y随x的增大而增大,∵x且x为正整数,∴当x=26时,y有最大值,最大值为:500×26+10000=23000,答:购买冰箱26台时,能使商店销售完这批家电后获得的利润最大,最大利润为23000元.点睛:本题考查了一次函数的应用,一元一次不等式的应用.一次函数求最值问题时,一定要弄清楚y随x的增大是增大还是变小.23.(1)B;(2)的最小整数解为;(3)隐线中的最大值和最小值的和为【分析】(1)将A,B,C三点坐标代入方程,方程成立的点即为所求,(2)将P,Q代入方程,组成方程组求解即可,(3)将P代入解析:(1)B;(2)的最小整数解为;(3)隐线中的最大值和最小值的和为【分析】(1)将A,B,C三点坐标代入方程,方程成立的点即为所求,(2)将P,Q代入方程,组成方程组求解即可,(3)将P代入隐线方程,与组成方程组,求解方程组的解,再由即可求解.【详解】解:(1)将A,B,C三点坐标代入方程,只有B点符合,∴隐线的亮点的是B.(2)将代入隐线方程得:解得代入方程得:的最小整数解为(3)由题意可得的最大值为,最小值为隐线中的最大值和最小值的和为【点睛】本题考查了二元一次方程的新定义,二元一次方程与直线的关系,运用了数形结合的思想,理解题意是解题关键.24.(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形内角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角解析:(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形内角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角互补即可求出∠CEN的度数.(3)画出图形,求出在MN⊥CD时的旋转角,再除以30°即得结果.【详解】解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°;(2)∵∠BON=30°,∠N=30°,∴∠BON=∠N,∴MN∥CB.∴∠OCD+∠CEN=180°,∵∠OCD=45°∴∠CEN=180°-45°=135°;(3)如图,MN⊥CD时,旋转角为360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年上饶市广信区人民法院公开招聘劳务派遣工作人员14人备考题库带答案详解
- 2026年公安部第一研究所公开招聘预报名公安部第一研究所备考题库及参考答案详解
- 2026年北海市银海区财政局招聘编外用工人员备考题库及一套答案详解
- 2026年全国人大机关直属事业单位公开招聘工作人员50人备考题库及1套参考答案详解
- 2026年临沧市临翔区司法局公开招聘司法协理员备考题库完整答案详解
- 2026年关于面向社会招聘太湖县政务服务中心综合窗口工作人员的备考题库完整答案详解
- 2026年太仓市滨江投资发展集团有限公司及下属子公司公开招聘备考题库及1套完整答案详解
- 2026年度黄河中心医院事业单位公开招聘高校毕业生备考题库及答案详解参考
- 2026春招:南方航空笔试题及答案
- 九年级数学试题及答案
- 销售部年终总结及明年工作计划
- 工作计划执行跟踪表格:工作计划执行情况统计表
- (完整版)现用九年级化学电子版教材(下册)
- 城市道路路基土石方施工合同
- 教学计划(教案)-2024-2025学年人教版(2024)美术一年级上册
- 国家基本公共卫生服务项目之健康教育
- DL∕ T 1166-2012 大型发电机励磁系统现场试验导则
- 新人教版日语七年级全一册单词默写清单+答案
- HJ 636-2012 水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法
- QBT 2739-2005 洗涤用品常用试验方法 滴定分析 (容量分析)用试验溶液的制备
- 血液透析中低血压的预防和治疗
评论
0/150
提交评论