版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(完整版)数学苏教七年级下册期末试卷及解析一、选择题1.下列运算正确的是()A.(3x2)2=6x4 B.(x3)2=x9 C.3x2﹣x=2x D.x2•x3=x52.下列图形中,与是同位角的是()A. B. C. D.3.已知关于的方程组,给出下列结论:①当互为相反数时,;②当时解得为的2倍;③不论取什么实数,的值始终不变;④使为自然数的的值共有4个.上述结论正确的有()A.①③ B.②④ C.①②③ D.①③④4.下列各式从左到右的变形中,是因式分解的是()A.8a2b2=2a2·4b2 B.1-a2=(1+a)(1-a)C.(x+2)(x-1)=x2+x-2 D.a2-2a+3=(a-1)2+25.若不等式组有解,则a的取值范围是()A.a≤3 B.a<3 C.a<2 D.a≤26.下列命题:①同旁内角互补,两直线平行;②直角都相等;③直角三角形没有钝角;④若,则.其中,它们的逆命题是真命题的个数是()A.1 B.2 C.3 D.47.已知整数,满足下列条件:,…,以此类推,的值是()A. B. C. D.8.如图,△ABC的面积为.第一次操作:分别延长,,至点,,,使,,,顺次连接,,,得到△.第二次操作:分别延长,,至点,,,使,,,顺次连接,,,得到△,…按此规律,要使得到的三角形的面积超过2020,最少经过多少次操作()A. B. C. D.二、填空题9.计算:__________.10.命题“同位角相等”是_______(填“真”或“假”,)命题11.一机器人在平地上按如图设置的程序行走,则该机器人从开始到停止所行走的路程为_____.12.如图,有三种卡片,其中边长为的正方形卡片1张,长为、宽为的长方形卡片4张,边长为的正方形卡片4张,用这9张卡片刚好能拼成一个大正方形,则这个大正方形的边长为_____.13.已知方程组的解满足方程x+3y=3,则m的值是________.14.如图,想在河堤两岸搭建一座桥,在如图所示的几种搭建方式中,最短的是,理由是______.15.三角形两边a=2,b=9,第三边c为为奇数,则此三角形周长为_____________.16.如图,在中,,将绕点逆时针旋转,得到,连接.若,则________.17.计算:(1)﹣32+(﹣)﹣2﹣(π﹣5)0﹣|﹣2|;(2)(3a+2b)(3a﹣2b)﹣3a(a﹣2b).18.因式分解(1)(2)(3)19.解方程组:(1);(2).20.解不等式组,并把解集在数轴上表示出来.三、解答题21.如图,在△ABC中,AB=AC,点D、E分别在AC及其延长线上,点B,F分别在AE两侧,连接CF,已知AD=EC,BC=DF,BC∥DF.(1)AB∥EF吗?为什么?(2)若CE=CF,FC平分∠DFE,求∠A的度数.22.快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元;两种机器人的单价与每小时分拣快递的数量如下表:甲型机器人乙型机器人购买单价(万元/台)mn每小时拣快递数量(件)12001000(1)求购买甲、乙两种型号的机器人所需的单价m和n分别为多少万元/台?(2)若该公司计划购买这两种型号的机器人共8台,购买甲型机器人不超过4台,并且使这8台机器人每小时分拣快递件数总和不少于8400件,则该公司有几种购买方案?哪种方案费用最低,最低费用是多少万元?23.用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等)作侧面和底面、做成如图2的竖式和横式的两种无盖的长方体容器,(1)现有长方形铁片2014张,正方形铁片1176张,如果将两种铁片刚好全部用完,那么可加工成竖式和横式长方体容器各有几个?(2)现有长方形铁片a张,正方形铁片b张,如果加工这两种容器若干个,恰好将两种铁片刚好全部用完.则的值可能是()A.2019B.2020C.2021D.2022(3)给长方体容器加盖可以加工成铁盒.先工厂仓库有35张铁皮可以裁剪成长方形和正方形铁片,用来加工铁盒,已知1张铁皮可裁剪出3张长方形铁片或4张正方形铁片,也可以裁剪出1张长方形铁片和2张正方形铁片.请问怎样充分利用这35张铁皮,最多可以加工成多少个铁盒?24.如图,平分,平分,请判断与的位置关系并说明理由;如图,当且与的位置关系保持不变,移动直角顶点,使,当直角顶点点移动时,问与否存在确定的数量关系?并说明理由.如图,为线段上一定点,点为直线上一动点且与的位置关系保持不变,①当点在射线上运动时(点除外),与有何数量关系?猜想结论并说明理由.②当点在射线的反向延长线上运动时(点除外),与有何数量关系?直接写出猜想结论,不需说明理由.25.已知:射线(1)如图1,的角平分线交射线与点,若,求的度数.(2)如图2,若点在射线上,平分交于点,平分交于点,,求的度数.(3)如图3,若,依次作出的角平分线,的角平分线,的角平分线,的角平分线,其中点,,,,,都在射线上,直接写出的度数.【参考答案】一、选择题1.D解析:D【分析】根据整式的乘法以及乘方等运算,对选项逐个判断即可.【详解】解:A.(3x2)2=9x4,故本选项不合题意;B.(x3)2=x6,故本选项不合题意;C.3x2与﹣x不是同类项,所以不能合并,故本选项不合题意;D.x2•x3=x5,故本选项符合题意;故选:D.【点睛】此题主要考查了整式的乘法和乘方等运算,熟练掌握整式的性质及相关运算是解题的关键.2.B解析:B【分析】两条线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样的一对角叫做同位角.【详解】解:根据同位角的定义可知B选项中∠1与∠2在直线的同侧,并且在第三条直线(截线)的同旁,故是同位角.故选:B.【点睛】本题主要考查同位角的定义,准确理解同位角的定义,是解本题的关键.3.D解析:D【分析】由已知可得x+y=0,所以2+a=0,即可求a=−2,故①正确;将a=−5代入方程组得,解方程组即可确定②不正确;解方程组得x=2a−2,y=4−a,则x+2y=6,故③正确;由题意可知,x=2a−2≥0时,a≥1,y=4−a≥0时,a≤4,则1≤a≤4,所以当a=1,2,3,4时,x、y的值为自然数,故④正确.【详解】解:当x,y互为相反数时,x+y=0,∴2+a=0,∴a=−2,故①正确;当a=−5时,方程组为,①+②得,x=−12,将x=−12代入①得,y=9,∴方程组的解为,故②不正确;,①+②得,x=2a−2,将x=2a−2代入①,得y=4−a,∴x+2y=2a−2+8−2a=6,故③正确;由③得,x=2a−2≥0时,a≥1,y=4−a≥0时,a≤4,∴1≤a≤4,∴当a=1,2,3,4时,x、y的值为自然数,∴使x,y为自然数的a的值共有4个,故④正确;故选:D.【点睛】本题考查含参数的二元一次方程组的解以及解不等式,熟练掌握二元一次方程组的解法是解题的关键.4.B解析:B【分析】根据因式分解的定义逐项判断即得答案.【详解】解:A、8a2b2=2a2·4b2,不是因式分解,故本选项不符合题意;B、1-a2=(1+a)(1-a),是因式分解,故本选项符合题意;C、(x+2)(x-1)=x2+x-2,不是因式分解,故本选项不符合题意;D、a2-2a+3=(a-1)2+2,不是因式分解,故本选项不符合题意.故选:B.【点睛】本题考查了分解因式的定义,属于基础概念题型,将一个多项式化为几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式,熟知概念是关键.5.B解析:B【分析】本题首先分别求解两个不等式,继而得出x取值范围,最后根据不等式组有解确定参数a的范围.【详解】∵>,∴>.∵<,∴<.若满足不等式组有解,则:<,有<.故选:B.【点睛】本题考查不等式组的求解以及参数的确定,求解不等式过程可将参数视作已知量,按照常规解法求解,最后再利用题目限制条件反求参数.6.A解析:A【详解】解析:本题考查的逆命题及真命题的判定.①同旁内角互补,两直线平行的逆命题是:两直线平行,同旁内角互补,是真命题;②直角都相等的逆命题:相等的角是直角,是假命题;③直角三角形没有钝角的逆命题:没有钝角的三角形是直角三角形;可能是锐角三角形,所以是假命题;④若,则的逆命题:若,则;有可能是互为相反数,是假命题.故答案为A.7.B解析:B【分析】通过有限次计算的结果,发现并总结规律,根据发现的规律推算出要求的字母表示的数值.【详解】解:a0=0,a1=-|a0+1|=-|0+1|=-1,a2=-|a1+2|=-|-1+2|=-1,a3=-|a2+3|=-|-1+3|=-2,a4=-|a3+4|=-|-2+4|=-2,a5=-|a4+5|=-|-2+5|=-3;a6=-|a5+6|=-|-3+6|=-3;a7=-|a6+7|=-|-3+7|=-4;……由此可以看出,这列数是0,-1,-1,-2,-2,-3,-3,-4,-4,……,(2020+1)÷2=1010…1,故a2020=-1010,故选:B.【点睛】本题考查了规律型:数字的变化类,需要掌握绝对值的运算法则.8.A解析:A【分析】先根据已知条件求出△A1B1C1及△A2B2C2的面积,再根据两三角形的倍数关系求解即可.【详解】解:连接A1C,如图,∵AB=A1B,∴△ABC与△A1BC的面积相等,∵△ABC面积为1,∴=1.∵BB1=2BC,∴=2,同理可得,=2,=2,∴=2+2+2+1=7;同理可得:△A2B2C2的面积=7×△A1B1C1的面积=49,第三次操作后的面积为7×49=343,第四次操作后的面积为7×343=2401.故按此规律,要使得到的三角形的面积超过2020,最少经过4次操作.故选:A.【点睛】考查了三角形的中线的性质和三角形的面积,属规律性题目,解答此题的关键是找出相邻两次操作之间三角形面积的关系,再根据规律求解.二、填空题9.【分析】利用单项式乘单项式的乘法法则计算即可.【详解】解:故答案为:【点睛】此题主要考查了单项式乘单项式的乘法法则,熟记法则是解题的关键.10.假【分析】两直线平行,同位角相等,如果没有前提条件,并不能确定同位角相等,由此可作出判断.【详解】解:两直线平行,同位角相等,命题“同位角相等”是假命题,因为没有说明前提条件.故答案为:假.【点睛】本题考查了命题与定理的知识,属于基础题,同学们一定要注意一些定理成立的前提条件.11.32m【分析】该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.【详解】解:根据题意,360°÷45°=8,则所走的路程是:4×8=32(m).故答案为:32m.【点睛】本题考查了正多边形的外角和定理,理解经过的路线是正多边形是关键.12.【分析】根据题意列出关系式,分解因式即可得正方形边长.【详解】解:根据题意得:,则这个正方形的边长为,故答案是:;【点睛】此题考查了因式分解的应用,熟练掌握完全平方公式和理解因式分解的方法是解本题的关键.13.1【分析】利用加减法的思想由方程组可求得x+3y=2m+2,结合条件可得到关于m的方程,可求得m的值.【详解】在方程组中,由①+②可得x+3y=2m+1,又x,y满足x+3y=3,∴2m+1=3,解得m=1,∴m的值为1.【点睛】本题主要考查方程组的解法,灵活利用加减消元法的思想是解题的关键.14.B解析:垂线段最短【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.据此作答.【详解】解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∵PB⊥AD,∴PB最短.故答案为:垂线段最短.【点睛】本题考查了垂线段最短,利用垂线段的性质是解题的关键.15.20【分析】根据三角形的三边关系可得:,即可求解.【详解】根据三角形的三边关系得:,即,∵第三边c为为奇数,∴取,∴此三角形周长为,故答案为:.【点睛】本题主要考查了三角解析:20【分析】根据三角形的三边关系可得:,即可求解.【详解】根据三角形的三边关系得:,即,∵第三边c为为奇数,∴取,∴此三角形周长为,故答案为:.【点睛】本题主要考查了三角形的三边关系,即两边之和大于第三边,两边之差小于第三边,及三角形的周长的求法,解题的关键是熟练掌握三角形的三边关系,及三角形的周长的求法.16.40【分析】根据旋转的性质得AC′=AC,∠B′AB=∠C′AC,再根据等腰三角形的性质得∠AC′C=∠ACC′,然后根据平行线的性质由CC′∥AB得,则,再根据三角形内角和计算出∠CAC′=4解析:40【分析】根据旋转的性质得AC′=AC,∠B′AB=∠C′AC,再根据等腰三角形的性质得∠AC′C=∠ACC′,然后根据平行线的性质由CC′∥AB得,则,再根据三角形内角和计算出∠CAC′=40,所以.【详解】解:∵绕点逆时针旋转到的位置,∴,,∴,∵,∴,∴,∴,∴,故答案为40.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了平行线的性质.17.(1)-8;(2)6a2+6ab-4b2【分析】(1)先逐项化简,再算加减即可;(2)先根据平方差公式、单项式与多项式的乘法法则计算,再去括号合并同类项.【详解】解:(1)原式=-9+4-解析:(1)-8;(2)6a2+6ab-4b2【分析】(1)先逐项化简,再算加减即可;(2)先根据平方差公式、单项式与多项式的乘法法则计算,再去括号合并同类项.【详解】解:(1)原式=-9+4-1-2=-8;(2)原式=9a2-4b2-(3a2-6ab)=9a2-4b2-3a2+6ab=6a2-4b2+6ab.【点睛】本题考查了有理数的混合运算,零指数幂和负整数指数幂的意义,以及整式的混合运算,熟练掌握运算法则是解答本题的关键.18.(1);(2);(3).【分析】(1)直接利用平方差公式分解因式即可;(2)直接利用完全平方公式分解因式即可;(3)先提取公因式x,进而利用完全平方公式分解因式即可.【详解】(1)原式;解析:(1);(2);(3).【分析】(1)直接利用平方差公式分解因式即可;(2)直接利用完全平方公式分解因式即可;(3)先提取公因式x,进而利用完全平方公式分解因式即可.【详解】(1)原式;(2)原式.(3)原式=.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式是解题关键.19.(1);(2).【详解】(1)应用代入消元法,求出方程组的解是多少即可.(2)应用加减消元法,求出方程组的解是多少即可.【解答】解:(1)由②,可得:x=y﹣3③,③代入①,可得:2(解析:(1);(2).【详解】(1)应用代入消元法,求出方程组的解是多少即可.(2)应用加减消元法,求出方程组的解是多少即可.【解答】解:(1)由②,可得:x=y﹣3③,③代入①,可得:2(y﹣3)+y=6,解得y=4,把y=4代入③,解得x=1,∴原方程组的解是.(2)①×4+②×3,可得25m=﹣50,解得m=﹣2,把m=﹣2代入①,解得n=3,∴原方程组的解是.【点睛】本题主要考查了解二元一次方程组,解题的关键在于能够熟练掌握解二元一次方程组的方法.20.,数轴见解析【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:由①得:由②得:所以不等式组的解为.在数轴解析:,数轴见解析【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:由①得:由②得:所以不等式组的解为.在数轴上表示为:【点睛】本题主要考查了解一元一次不等式组,并在数轴上表示不等式的解集,解题的关键在于能够熟练掌握解一元一次不等式.三、解答题21.(1)AB∥EF,理由见解析;(2)36°【分析】(1)先由AD=EC,得AC=ED,再由平行线的性质得∠ACB=∠EDF,最后根据SAS定理证明△ABC≌△EFD,由全等三角形的性质得出∠A=解析:(1)AB∥EF,理由见解析;(2)36°【分析】(1)先由AD=EC,得AC=ED,再由平行线的性质得∠ACB=∠EDF,最后根据SAS定理证明△ABC≌△EFD,由全等三角形的性质得出∠A=∠E,则可得出结论;(2)证明∠EDF=∠EFD=2∠E,再根据三角形的内角和定理求得∠E,便可得∠A.【详解】解:(1)AB∥EF.理由:∵AD=EC,∴AC=ED,∵BC∥DF,∴∠ACB=∠EDF,在△ABC和△EFD中,,∴△ABC≌△EFD(SAS),∴∠A=∠E,∴AB∥EF;(2)∵△ABC≌△EFD,∴AB=EF,AC=ED,∵AB=AC,∴ED=EF,∴∠EDF=∠EFD,∵CE=CF,∴∠CEF=∠CFE,∵CF平分∠DFE,∴∠EFD=2∠CFE=2∠E,∵∠EDF+∠EFD+∠E=180°,∴2∠E+2∠E+∠E=180°,∴∠E=36°,∵△ABC≌△EFD,∴∠A=∠E=36°.【点睛】本题主要考查了全等三角形的性质与判定,等腰三角形的性质与判定,平行线的性质,角平分线的性质,解题的关键是证明△ABC≌△EFD.22.(1)甲、乙两种型号的机器人每台价格分别是6万元、4万元;(2)公司有3种购买方案,分别是购买甲型机器人2台,乙型机器人6台,购买甲型机器人3台,乙型机器人5台,购买甲型机器人4台,乙型机器人4台;解析:(1)甲、乙两种型号的机器人每台价格分别是6万元、4万元;(2)公司有3种购买方案,分别是购买甲型机器人2台,乙型机器人6台,购买甲型机器人3台,乙型机器人5台,购买甲型机器人4台,乙型机器人4台;该公司购买甲型机器人2台,乙型机器人6台这个方案费用最低,最低费用是36万元【分析】(1)根据甲型机器人1台,乙型机器人2台,共需14万元和购买甲型机器人2台,乙型机器人3台,共需24万元,列出方程组,进行求解即可;(2)设该公可购买甲型机器人a台,乙型机器人(8−a)台,根据两种型号的机器人共8台,每小时分拣快递件数总和不少于8400件,列出不等式,求出a的取值范围,再利用一次函数找到费用最低值.【详解】解:(1)根据题意得:,解得:,答:甲、乙两种型号的机器人每台价格分别是6万元、4万元.(2)设该公可购买甲型机器人a台,乙型机器人台,根据题意得:,解得:,因为,a为正整数,∴a的取值为2,3,4,∴该公司有3种购买方案,分别是购买甲型机器人2台,乙型机器人6台,购买甲型机器人3台,乙型机器人5台,购买甲型机器人4台,乙型机器人4台,设该公司的购买费用为w万元,则,∵,∴w随a的增大而增大,当时,w最小,(万元),∴该公司购买甲型机器人2台,乙型机器人6台这个方案费用最低,最低费用是36万元.【点睛】此题考查了二元一次方程组、一元一次不等式组、一次函数的应用,分析题意,根据关键描述语,找到合适的数量关系是解决问题的关键.23.(1)竖式长方体铁容器100个,横式长方体铁容器538个;(2)B;(3)19个【分析】(1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,根据加工的两种长方体铁容器共用了长方形铁片20解析:(1)竖式长方体铁容器100个,横式长方体铁容器538个;(2)B;(3)19个【分析】(1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,根据加工的两种长方体铁容器共用了长方形铁片2014张、正方形铁片1176张,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设竖式纸盒c个,横式纸盒d个,由题意列出方程组可求解.(3)设做长方形铁片的铁板为m块,做正方形铁片的铁板为n块,由铁板的总数量及所需长方形铁片的数量为正方形铁皮的2倍,即可得出关于m,n的二元一次方程组,解之即可得出m,n的值,取其整数部分再将剩余铁板按一张铁板裁出1个长方形铁片和2个正方形铁片处理,即可得出结论.【详解】解:(1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,依题意,得:,解得:,答:可以加工竖式长方体铁容器100个,横式长方体铁容器538个.(2)设竖式纸盒c个,横式纸盒d个,根据题意得:,∴5c+5d=5(c+d)=a+b,∴a+b是5的倍数,可能是2020,故选B;(3)设做长方形铁片的铁板为m块,做正方形铁片的铁板为n块,依题意,得:,解得:,∵在这35块铁板中,25块做长方形铁片可做25×3=75(张),9块做正方形铁片可做9×4=36(张),剩下1块可裁出1张长方形铁片和2张正方形铁片,∴共做长方形铁片75+1=76(张),正方形铁片36+2=38(张),∴可做铁盒76÷4=19(个).答:最多可以加工成19个铁盒.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:找准等量关系,正确列出二元一次方程(组).24.(1)详见解析;(2)∠BAE+∠MCD=90°,理由详见解析;(3)详见解析.【详解】试题分析:(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再解析:(1)详见解析;(2)∠BAE+∠MCD=90°,理由详见解析;(3)详见解析.【详解】试题分析:(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,故可得出结论;(2)过E作EF∥AB,根据平行线的性质可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出结论;(3)根据AB∥CD可知∠BAC+∠ACD=180°,∠QPC+∠PQC+∠PCQ=180°,故∠BAC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年中山大学附属第三医院公开招聘感染性疾病科郑悦副研究员科研助理备考题库附答案详解
- 2026年云阳县云安村干部公开招聘备考题库及答案详解参考
- 2026年德安县专业森林消防大队消防员招聘备考题库及完整答案详解1套
- 2026年中国宁波外轮代理有限公司招聘备考题库及1套完整答案详解
- 2026年广州市第一人民医院总院医务部编外人员招聘备考题库及答案详解参考
- 2026年北京科技大学智能科学与技术学院招聘备考题库完整参考答案详解
- 2025年厦大附属翔安实验学校公开招聘顶岗教师备考题库及1套完整答案详解
- 2026年临沂市供销集团招聘6人备考题库及一套答案详解
- 2026年上海外国语大学附属外国语学校松江云间中学校园招聘备考题库含答案详解
- 2026年内江日报印务有限公司面向社会公开招聘备考题库及一套参考答案详解
- DB34∕T 5161-2025 机动车检验机构“舒心车检”服务规范
- 2025年山西大地环境投资控股有限公司社会招聘116人备考题库及答案详解参考
- 2026中国物流集团校园招聘参考笔试题库及答案解析
- 胸锁乳突肌区课件
- 2025年物业管理师《物业管理实务》真题及试题及答案
- 2026危险品物流行业成本控制与运营效率优化专项研究报告
- 总经理年度工作述职报告
- 本科院校实验员面试电子版题
- 线束厂现场管理制度(3篇)
- 雅思2025年阅读真题解析试卷(含答案)
- 黑龙江省哈尔滨香坊区五校联考2026届物理九上期末考试试题含解析
评论
0/150
提交评论