【《关于石墨烯纳米片的研究文献综述》2100字】_第1页
【《关于石墨烯纳米片的研究文献综述》2100字】_第2页
【《关于石墨烯纳米片的研究文献综述》2100字】_第3页
【《关于石墨烯纳米片的研究文献综述》2100字】_第4页
【《关于石墨烯纳米片的研究文献综述》2100字】_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE3关于石墨烯纳米片的研究文献综述1.1石墨烯纳米片形状及制备石墨烯是一种由碳原子以SP2杂化轨道组成二维碳纳米材料,在二维平面上具有无限重复的周期结构。石墨烯特殊稳定的晶体结构使其具有许多独特的特性,例如石墨烯具有优异导电性,较高的柔韧性,较大的比表面积(2630m2g-1)等ADDINEN.CITEADDINEN.CITE.DATA[21-23]。因其独特的物理特性,使得石墨烯在电催化ADDINEN.CITE<EndNote><Cite><Author>Chen</Author><Year>2018</Year><RecNum>152</RecNum><DisplayText><styleface="superscript">[12]</style></DisplayText><record><rec-number>152</rec-number><foreign-keys><keyapp="EN"db-id="0f9r9eszqzvs02edwtpptwwwxw2e5sasa5r0"timestamp="1618102846">152</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Chen,S.</author><author>Cheng,J.</author><author>Ma,L.</author><author>Zhou,S.</author><author>Xu,X.</author><author>Zhi,C.</author><author>Zhang,W.</author><author>Zhi,L.</author><author>Zapien,J.A.</author></authors></contributors><auth-address>CenterofSuper-DiamondandAdvancedFilms(COSDAF),CityUniversityofHongKong,Kowloon,HongKong999077.apjazs@.hk.</auth-address><titles><title>Light-weight3DCo-N-dopedhollowcarbonspheresasefficientelectrocatalystsforrechargeablezinc-airbatteries</title><secondary-title>Nanoscale</secondary-title></titles><periodical><full-title>Nanoscale</full-title></periodical><pages>10412-10419</pages><volume>10</volume><number>22</number><edition>2018/04/12</edition><dates><year>2018</year><pub-dates><date>Jun7</date></pub-dates></dates><isbn>2040-3372(Electronic) 2040-3364(Linking)</isbn><accession-num>29637977</accession-num><urls><related-urls><url>/pubmed/29637977</url></related-urls></urls><electronic-resource-num>10.1039/c8nr01140k</electronic-resource-num></record></Cite></EndNote>[12]、光电生物领域、传感以及储能器件ADDINEN.CITE<EndNote><Cite><Author>Song</Author><Year>2016</Year><RecNum>151</RecNum><DisplayText><styleface="superscript">[24]</style></DisplayText><record><rec-number>151</rec-number><foreign-keys><keyapp="EN"db-id="0f9r9eszqzvs02edwtpptwwwxw2e5sasa5r0"timestamp="1618102615">151</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Song,Yu</author><author>Liu,Tian-Yu</author><author>Xu,Guo-Liang</author><author>Feng,Dong-Yang</author><author>Yao,Bin</author><author>Kou,Tian-Yi</author><author>Liu,Xiao-Xia</author><author>Li,Yat</author></authors></contributors><titles><title>Tri-layeredgraphitefoilforelectrochemicalcapacitors</title><secondary-title>JournalofMaterialsChemistryA</secondary-title></titles><periodical><full-title>JournalofMaterialsChemistryA</full-title></periodical><pages>7683-7688</pages><volume>4</volume><number>20</number><section>7683</section><dates><year>2016</year></dates><isbn>2050-7488 2050-7496</isbn><urls></urls><electronic-resource-num>10.1039/c6ta02075e</electronic-resource-num></record></Cite></EndNote>[24]。自从2004年,英国曼彻斯特大学的Geim等人通过机械剥离制备了稳定的单层石墨烯。为实验研究提供了令人兴奋的可能性。其优异的性能使其成为超级电容应用的另一种材料选择,引起了人们的极大关注ADDINEN.CITEADDINEN.CITE.DATA[4,25-27]。目前石墨烯的制备方法主要有氧化还原法ADDINEN.CITE<EndNote><Cite><Author>Wang</Author><Year>2009</Year><RecNum>81</RecNum><DisplayText><styleface="superscript">[28,29]</style></DisplayText><record><rec-number>81</rec-number><foreign-keys><keyapp="EN"db-id="0f9r9eszqzvs02edwtpptwwwxw2e5sasa5r0"timestamp="1575370673">81</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Wang,Guoxiu</author><author>Shen,Xiaoping</author><author>Wang,Bei</author><author>Yao,Jane</author><author>Park,Jinsoo</author></authors></contributors><titles><title>Synthesisandcharacterisationofhydrophilicandorganophilicgraphenenanosheets</title><secondary-title>Carbon</secondary-title></titles><periodical><full-title>Carbon</full-title></periodical><pages>1359-1364</pages><volume>47</volume><number>5</number><section>1359</section><dates><year>2009</year></dates><isbn>00086223</isbn><urls></urls><electronic-resource-num>10.1016/j.carbon.2009.01.027</electronic-resource-num></record></Cite><Cite><Author>Jihwa</Author><Year>2019</Year><RecNum>112</RecNum><record><rec-number>112</rec-number><foreign-keys><keyapp="EN"db-id="0f9r9eszqzvs02edwtpptwwwxw2e5sasa5r0"timestamp="1591346195">112</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Jihwa,Hong</author><author>Soo-Jin,Park</author><author>Seok,Kim</author></authors></contributors><titles><title>SynthesisandelectrochemicalcharacterizationofnanostructuredNi-Co-MOF/grapheneoxidecompositesascapacitorelectrodes</title><secondary-title>ElectrochimicaActa</secondary-title></titles><periodical><full-title>ElectrochimicaActa</full-title></periodical><dates><year>2019</year><pub-dates><date>2019/04/19</date></pub-dates></dates><urls><related-urls><url>/10.1016/j.electacta.2019.04.121</url></related-urls></urls><electronic-resource-num>10.1016/j.electacta.2019.04.121</electronic-resource-num></record></Cite></EndNote>[28,29]、化学气相沉积(CVD)和电化学剥离等ADDINEN.CITEADDINEN.CITE.DATA[26,30,31]。其中,氧化还原需要使用大量强酸强氧化剂将天然石墨氧化,增大石墨层之间的间距,在石墨层与层之间插入氧化物,制得氧化石墨烯。然后,需要用大量的水清洗造成环境污染ADDINEN.CITEADDINEN.CITE.DATA[4,28]。而CVD法则是通过含碳有机气体为原料进行气相沉积制得石墨烯薄膜的方法。因为CVD法需要较高的温度和衬底转移等,所以CVD法需要较高的成本。而电化学剥离近年来,以其简便、快速、环保的特性生产出高质量的石墨烯而受到人们的关注。电化学剥离是将正电荷或负电荷被注入石墨电极,使得离子插入石墨电极,从而促进石墨烯纳米片的剥落ADDINEN.CITEADDINEN.CITE.DATA[26,30,32]。此外,电化学剥离可以最大限度地减少强酸强氧化剂的实验,从而比传统的化学剥离技术(Hummers方法)的更环保、简单安全,同时极大降低了生产成本。1.2石墨烯纳米片在超级电容器的应用近年来,因石墨烯独特电化学特性而广泛应用于超级电容。一般来说,基于氧化石墨烯的超级电容器电极材料的应用方式主要是这3种方法:(1)石墨烯粉末ADDINEN.CITEADDINEN.CITE.DATA[32-34];(2)石墨烯作为膜材料ADDINEN.CITEADDINEN.CITE.DATA[35-37];(3)三维石墨烯ADDINEN.CITEADDINEN.CITE.DATA[8,23,38]。(1)石墨烯粉末在超级电容器中的应用由于氧化石墨烯提供的比表面积有限,加上氧化石墨烯纳米片存在严重的自堆集现象,有效比表面积大大减小。解决这个问题的一种方法就是对石墨烯进行改性。例如,JiangADDINEN.CITE<EndNote><Cite><Author>Jiang</Author><Year>2019</Year><RecNum>129</RecNum><DisplayText><styleface="superscript">[22]</style></DisplayText><record><rec-number>129</rec-number><foreign-keys><keyapp="EN"db-id="0f9r9eszqzvs02edwtpptwwwxw2e5sasa5r0"timestamp="1607496346">129</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Jiang,Hedong</author><author>Ye,Xingke</author><author>Zhu,Yucan</author><author>Yue,Ziyu</author><author>Wang,Liheng</author><author>Xie,Jianliang</author><author>Wan,Zhongquan</author><author>Jia,Chunyang</author></authors></contributors><titles><title>FlexibleSolid-StateSupercapacitorswithHighArealPerformanceEnabledbyChlorine-DopedGrapheneFilmswithCommercial-LevelMassLoading</title><secondary-title>ACSSustainableChemistry&Engineering</secondary-title></titles><periodical><full-title>AcsSustainableChemistry&Engineering</full-title><abbr-1>ACSSustain.Chem.Eng.</abbr-1></periodical><pages>18844-18853</pages><volume>7</volume><number>23</number><section>18844</section><dates><year>2019</year></dates><isbn>2168-0485 2168-0485</isbn><urls></urls><electronic-resource-num>10.1021/acssuschemeng.9b03810</electronic-resource-num></record></Cite></EndNote>[22]等人利用HCl将氧化石墨烯薄膜还原,并将Cl原子掺杂到碳骨架中以提高电导率,其在1Ag-1时的容量为210Fg-1。然而,由于碳质材料的表面积有限,其电容远低于伪电容材料。一般来说,石墨烯的高比表面积有助于控制活性纳米材料的形貌,并来提高其稳定性。所以我们将石墨烯复制容量更大的赝电容型材料。例如,CNT、CuO纳米片ADDINEN.CITE<EndNote><Cite><Author>Islam</Author><Year>2018</Year><RecNum>82</RecNum><DisplayText><styleface="superscript">[21]</style></DisplayText><record><rec-number>82</rec-number><foreign-keys><keyapp="EN"db-id="0f9r9eszqzvs02edwtpptwwwxw2e5sasa5r0"timestamp="1575372549">82</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Islam,DewanAzharul</author><author>Chakraborty,Anindita</author><author>Roy,Atanu</author><author>Das,Sachindranath</author><author>Acharya,Himadri</author></authors></contributors><titles><title>FabricationofGraphene‐Oxide(GO)‐SupportedSheet‐LikeCuONanostructuresDerivedfromaMetal‐Organic‐FrameworkTemplateforHigh‐PerformanceHybridSupercapacitors</title><secondary-title>ChemistrySelect</secondary-title></titles><periodical><full-title>ChemistrySelect</full-title></periodical><pages>11816-11823</pages><volume>3</volume><number>42</number><section>11816</section><dates><year>2018</year></dates><isbn>2365-6549 2365-6549</isbn><urls></urls><electronic-resource-num>10.1002/slct.201802612</electronic-resource-num></record></Cite></EndNote>[21]、碳材料ADDINEN.CITE<EndNote><Cite><Author>Xu</Author><Year>2015</Year><RecNum>141</RecNum><DisplayText><styleface="superscript">[39]</style></DisplayText><record><rec-number>141</rec-number><foreign-keys><keyapp="EN"db-id="0f9r9eszqzvs02edwtpptwwwxw2e5sasa5r0"timestamp="1618085584">141</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Xu,Juan</author><author>Wei,Xicheng</author><author>Cao,Jianyu</author><author>Dong,Yuanzhu</author><author>Wang,Guoxin</author><author>Xue,Yufei</author><author>Wang,Wenchang</author><author>Chen,Zhidong</author></authors></contributors><titles><title>Facilesynthesisandelectrochemicalperformancesofbinder-freeflexiblegraphene/acetyleneblacksandwichfilm</title><secondary-title>ElectrochimicaActa</secondary-title></titles><periodical><full-title>ElectrochimicaActa</full-title></periodical><pages>391-397</pages><volume>152</volume><section>391</section><dates><year>2015</year></dates><isbn>00134686</isbn><urls></urls><electronic-resource-num>10.1016/j.electacta.2014.11.201</electronic-resource-num></record></Cite></EndNote>[39]等已经被加入到单个石墨烯薄片的中间层中,以克服它们的自团聚,并提高电导率。基于氧化石墨烯的超级电容器电极是通过传统的浆料技术进行制备的,其中电活性材料与导电添加剂以及有机粘合剂混合形成浆料,并涂在适当的集电极上,作为电极材料。然而传统的浆料技术,添加大量的导电剂和粘结剂会影响其电化学活性材料性能。(2)石墨烯膜材料在超级电容器中的应用石墨烯因其良好的力学性能可以很好的制作为膜电极,例如真空抽滤ADDINEN.CITEADDINEN.CITE.DATA[40,41]、电化学沉积ADDINEN.CITE<EndNote><Cite><Author>Yang</Author><Year>2018</Year><RecNum>204</RecNum><DisplayText><styleface="superscript">[42]</style></DisplayText><record><rec-number>204</rec-number><foreign-keys><keyapp="EN"db-id="0f9r9eszqzvs02edwtpptwwwxw2e5sasa5r0"timestamp="1618414826">204</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Yang,L.</author><author>Zheng,W.</author><author>Zhang,P.</author><author>Chen,J.</author><author>Tian,W.B.</author><author>Zhang,Y.M.</author><author>Sun,Z.M.</author></authors></contributors><titles><title>MXene/CNTsfilmspreparedbyelectrophoreticdepositionforsupercapacitorelectrodes</title><secondary-title>JournalofElectroanalyticalChemistry</secondary-title></titles><periodical><full-title>JournalofElectroanalyticalChemistry</full-title></periodical><pages>1-6</pages><volume>830-831</volume><section>1</section><dates><year>2018</year></dates><isbn>15726657</isbn><urls></urls><electronic-resource-num>10.1016/j.jelechem.2018.10.024</electronic-resource-num></record></Cite></EndNote>[42]、金属箔成膜法ADDINEN.CITEADDINEN.CITE.DATA[43-46]等。然而,GO膜或者改性GO膜提供的双电层电容都相当有限,因此需要复合或者一些容量高的赝电容材料以获得高性能的柔性电极材料。例如,NanADDINEN.CITE<EndNote><Cite><Author>Yu</Author><Year>2019</Year><RecNum>140</RecNum><DisplayText><styleface="superscript">[6]</style></DisplayText><record><rec-number>140</rec-number><foreign-keys><keyapp="EN"db-id="0f9r9eszqzvs02edwtpptwwwxw2e5sasa5r0"timestamp="1618084701">140</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Yu,MsLe</author><author>Zhao,Shi‐Xi</author><author>Wang,Yi‐Feng</author><author>Wu,Qi‐long</author><author>Zheng,MsXiao‐Xiao</author><author>Wei,Guodan</author><author>Nan,Ce‐Wen</author></authors></contributors><titles><title>Free‐standingReducedGrapheneOxide/MoO 3‐ x CompositeFilmwithHighPerformanceforFlexibleSupercapacitors</title><secondary-title>ChemistrySelect</secondary-title></titles><periodical><full-title>ChemistrySelect</full-title></periodical><pages>9165-9173</pages><volume>4</volume><number>31</number><section>9165</section><dates><year>2019</year></dates><isbn>2365-6549 2365-6549</isbn><urls></urls><electronic-resource-num>10.1002/slct.201901816</electronic-resource-num></record></Cite></EndNote>[6]等人通过真空抽滤和HI酸处理制得了Mn2O3/rGO复合膜,Mn2O3/rGO复合膜可以达到1376Fg-1的比电容同时具有良好的循环稳定性的可弯折性能。LiuADDINEN.CITEADDINEN.CITE.DATA[35]等人将多孔的碳纳米管/还原氧化石墨烯薄膜作为导电衬底垂直生长的二维CoZnNiS纳米阵列。该自自支撑膜最大比电容为1349.2Fg-1,此外将纯碳材料多孔膜(碳球集成石墨烯)作为超级电容器负极,该装置循环1000圈仍保持90.6%的循环寿命。(3)三维石墨烯在超级电容器中的应用三维石墨烯不仅暴露出更大的比表面积,而且构建了3D导电网络,常见的合成方法有气凝胶法ADDINEN.CITEADDINEN.CITE.DATA[8,23,38,47]。XuADDINEN.CITE<EndNote><Cite><Author>Xu</Author><Year>2014</Year><RecNum>147</RecNum><DisplayText><styleface="superscript">[23]</style></DisplayText><record><rec-number>147</rec-number><foreign-keys><keyapp="EN"db-id="0f9r9eszqzvs02edwtpptwwwxw2e5sasa5r0"timestamp="1618087865">147</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Xu,Y.</author><author>Lin,Z.</author><author>Zhong,X.</author><author>Huang,X.</author><author>Weiss,N.O.</author><author>Huang,Y.</author><author>Duan,X.</author></authors></contributors><auth-address>DepartmentofChemistryandBiochemistry,UniversityofCalifornia,LosAngeles,California90095,USA. DepartmentofMaterialsScienceandEngineering,UniversityofCalifornia,LosAngeles,California90095,USA. 1]DepartmentofMaterialsScienceandEngineering,UniversityofCalifornia,LosAngeles,California90095,USA[2]CaliforniaNanosystemsInstitute,UniversityofCalifornia,LosAngeles,California90095,USA. 1]DepartmentofChemistryandBiochemistry,UniversityofCalifornia,LosAngeles,California90095,USA[2]CaliforniaNanosystemsInstitute,UniversityofCalifornia,LosAngeles,California90095,USA.</auth-address><titles><title>Holeygrapheneframeworksforhighlyefficientcapacitiveenergystorage</title><secondary-title>NatCommun</secondary-title></titles><periodical><full-title>NatCommun</full-title></periodical><pages>4554</pages><volume>5</volume><edition>2014/08/12</edition><dates><year>2014</year><pub-dates><date>Aug8</date></pub-dates></dates><isbn>2041-1723(Electronic) 2041-1723(Linking)</isbn><accession-num>25105994</accession-num><urls><related-urls><url>/pubmed/25105994</url></related-urls></urls><electronic-resource-num>10.1038/ncomms5554</electronic-resource-num></record></Cite></EndNote>[23]等人,通过水热制备了三维大孔的氧化石墨烯水凝胶。HGF作为高性能的无粘结剂超级电容器电极,在有机电解质溶液中具有298Fg-1的比电容。同时,HGF具有较大的离子可到达的表面积、高效的电子和离子传输通道以及较高的堆积密度。LiuADDINEN.CITE<EndNote><Cite><Author>Liu</Author><Year>2018</Year><RecNum>85</RecNum><DisplayText><styleface="superscript">[8]</style></DisplayText><record><rec-number>85</rec-number><foreign-keys><keyapp="EN"db-id="0f9r9eszqzvs02edwtpptwwwxw2e5sasa5r0"timestamp="1575383366">85</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Liu,Lin</author><author>Yan,Yang</author><author>Cai,Zihe</author><author>Lin,Shengxuan</author><author>Hu,Xiaobin</author></authors></contributors><titles><title>Growth-OrientedFe-BasedMOFsSynergizedwithGrapheneAerogelsforHigh-PerformanceSupercapacitors</title><secondary-title>AdvancedMaterialsInterfaces</secondary-title></titles><periodical><full-title>AdvancedMaterialsInterfaces</full-title></periodical><volume>5</volume><number>8</number><section>1701548</section><dates><year>2018</year></dates><isbn>21967350</isbn><urls></urls><electronic-resource-num>10.1002/admi.201701548</electronic-resource-num></record></Cite></EndNote>[8]等人利用水热将MIL-88-Fe在石墨烯表面的(002)晶格平面上原位生长。结果表明,MOF/GA复合材料的比电容高达353Fg-1,循环10000次后的保有率为74.4%,比非定向的复合材料具有比容量大、倍率性能好、循环寿命长等优点。参考文献[1]ChoiC,AshbyDS,ButtsDM,etal.Achievinghighenergydensityandhighpowerdensitywithpseudocapacitivematerials[J].NatureReviewsMaterials,2019,5(1):5-19.[2]RamachandranR,RajavelK,XuanW,etal.InfluenceofTi3C2Tx(MXene)intercalationpseudocapacitanceonelectrochemicalperformanceofCo-MOFbinder-freeelectrode[J].CeramicsInternational,2018,44(12):14425-14431.[3]KumarKS,ChoudharyN,JungY,etal.RecentAdvancesinTwo-DimensionalNanomaterialsforSupercapacitorElectrodeApplications[J].ACSEnergyLetters,2018,3(2):482-495.[4]StankovichS,DikinDA,PinerRD,etal.Synthesisofgraphene-basednanosheetsviachemicalreductionofexfoliatedgraphiteoxide[J].Carbon,2007,45(7):1558-1565.[5]LeeDY,YoonSJ,ShresthaNK,etal.UnusualenergystorageandchargeretentioninCo-basedmetal–organic-frameworks[J].MicroporousandMesoporousMaterials,2012,153:163-165.[6]YuML,ZhaoSX,WangYF,etal.Free‐standingReducedGrapheneOxide/MoO3‐xCompositeFilmwithHighPerformanceforFlexibleSupercapacitors[J].ChemistrySelect,2019,4(31):9165-9173.[7]XinG,WangY,ZhangJ,etal.Aself-supportinggraphene/MnO2compositeforhigh-performancesupercapacitors[J].InternationalJournalofHydrogenEnergy,2015,40(32):10176-10184.[8]LiuL,YanY,CaiZ,etal.Growth-OrientedFe-BasedMOFsSynergizedwithGrapheneAerogelsforHigh-PerformanceSupercapacitors[J].AdvancedMaterialsInterfaces,2018,5(8)1701548.[9]RahmanifarMS,HesariH,NooriA,etal.AdualNi/Co-MOF-reducedgrapheneoxidenanocompositeasahighperformancesupercapacitorelectrodematerial[J].ElectrochimicaActa,2018,275:76-86.[10]JangJS,KooWT,KimDH,etal.InSituCouplingofMultidimensionalMOFsforHeterogeneousMetal-OxideArchitectures:TowardSensitiveChemiresistors[J].ACSCentSci,2018,4(7):929-937.[11]XuX,ShiW,LiuW,etal.Preparationoftwo-dimensionalassembledNi–Mn–Cternarycompositesforhigh-performanceall-solid-stateflexiblesupercapacitors[J].JournalofMaterialsChemistryA,2018,6(47):24086-24091.[12]ChenS,ChengJ,MaL,etal.Light-weight3DCo-N-dopedhollowcarbonspheresasefficientelectrocatalystsforrechargeablezinc-airbatteries[J].Nanoscale,2018,10(22):10412

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论