【《干旱和盐害对植物的影响和植物响应研究国内外文献综述》3800字】_第1页
【《干旱和盐害对植物的影响和植物响应研究国内外文献综述》3800字】_第2页
【《干旱和盐害对植物的影响和植物响应研究国内外文献综述》3800字】_第3页
【《干旱和盐害对植物的影响和植物响应研究国内外文献综述》3800字】_第4页
【《干旱和盐害对植物的影响和植物响应研究国内外文献综述》3800字】_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

干旱和盐害对植物的影响和植物响应研究国内外文献综述目录TOC\o"1-3"\h\u148471.1干旱和盐害现状 195241.1.1干旱现状 1274041.1.2盐害现状 1226721.2干旱和盐害对植物的影响 247521.2.1干旱对植物的影响 2240291.2.2盐害对植物的影响 2197721.3植物对干旱和盐处理的响应 250501.3.1气孔调节 2105301.3.2渗透调节 3312831.3.3清除活性氧 3121171.3.4根系调节 4169931.3.5激素调节 41.1干旱和盐害现状1.1.1干旱现状干旱是指土壤水分散失多于吸收的气候现象,高温和降水偏少等ADDINEN.CITE<EndNote><Cite><Author>Basu</Author><Year>2016</Year><RecNum>72</RecNum><DisplayText><styleface="superscript">[13]</style></DisplayText><record><rec-number>72</rec-number><foreign-keys><keyapp="EN"db-id="9v2e5rpw1f5zzoewzxn5r5rys929ap0paztt"timestamp="1616581639">72</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Basu,S.</author><author>Ramegowda,V.</author><author>Kumar,A.</author><author>Pereira,A.</author></authors><secondary-authors><author>Basu,S.</author><author>Ramegowda,V.</author><author>Kumar,A.</author><author>Pereira,A.</author></secondary-authors></contributors><auth-address>Crop,Soil,andEnvironmentalSciences,UniversityofArkansas,Fayetteville,Arkansas,72701,USA.</auth-address><titles><title>Plantadaptationtodroughtstress</title><secondary-title>F1000Res</secondary-title></titles><periodical><full-title>F1000Res</full-title></periodical><volume>5</volume><edition>2016/07/22</edition><keywords><keyword>Adaptation</keyword><keyword>Droughttolerance</keyword><keyword>droughtresistance</keyword><keyword>grainyield</keyword><keyword>photosynthesis</keyword><keyword>rice</keyword></keywords><dates><year>2016</year></dates><isbn>2046-1402(Print) 2046-1402(Linking)</isbn><accession-num>27441087</accession-num><urls><related-urls><url>/pubmed/27441087</url></related-urls></urls><custom2>PMC4937719</custom2><electronic-resource-num>10.12688/f1000research.7678.1</electronic-resource-num></record></Cite></EndNote>[13]都能够造成干旱现象。依据国家规定的《气象干旱等级标准》,预测干旱的警示信号颜色设置为橙色和红色。虽然现在科技高速发展,但是干旱问题依旧是我们难以克服的自然灾害。随着人口增多和商业经济的发展,用水量日益增多,进而加剧了干旱现象。因此,干旱难题应受到大多数人的关注和重视。全球的干旱面积占陆地的1/3,并且严重影响农作物的生长。有数据表明,干旱现象引发的作物减产超过50%ADDINEN.CITE<EndNote><Cite><Author>张丽莉</Author><Year>2015</Year><RecNum>186</RecNum><DisplayText><styleface="superscript">[14]</style></DisplayText><record><rec-number>186</rec-number><foreign-keys><keyapp="EN"db-id="9v2e5rpw1f5zzoewzxn5r5rys929ap0paztt"timestamp="1616588881">186</key></foreign-keys><ref-typename="中文文献">40</ref-type><contributors><authors><author>张丽莉</author><author>王庆祥</author><author>石瑛</author><author>祁雪</author></authors><secondary-authors><author>张丽莉</author><author>王庆祥</author><author>石瑛</author><author>祁雪</author></secondary-authors></contributors><auth-address>沈阳农业大学农学院;东北农业大学农学院;</auth-address><titles><title>干旱胁迫对马铃薯叶肉和茎部细胞超微结构的影响</title><secondary-title>沈阳农业大学学报</secondary-title></titles><periodical><full-title>沈阳农业大学学报</full-title></periodical><pages>91-95</pages><volume>46</volume><number>01</number><keywords><keyword>马铃薯</keyword><keyword>干旱胁迫</keyword><keyword>超微结构</keyword><keyword>叶肉</keyword><keyword>茎部</keyword></keywords><dates><year>2015</year></dates><isbn>1000-1700</isbn><call-num>21-1134/S</call-num><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[14],已经变成一个不可忽视的问题ADDINEN.CITEADDINEN.CITE.DATA[15]。干旱可以造成植物形态、生理生化及体内分子水平的变化,甚至破坏植物的光合系统和代谢系统,最后引起植物死亡。1.1.2盐害现状盐碱化是由多种原因引起的土壤水分蒸发,形成土壤结块的现象。依据联合国粮农组织统计数据,盐碱化影响全球超过8亿公顷土地面积以及约占2成有效使用土地面积。FAO组织推测21世纪50年代,由于世界人口增加,须加快粮食生产速度以至多产生70%的粮食才能满足基本需要。中国盐碱化土地面积几乎有1亿公顷,主要包括大西北、东三省和华北地区的缺水区域。我国能开发利用的盐碱土地面积占中国现有田地的10%ADDINEN.CITE<EndNote><Cite><Author>王佳丽</Author><Year>2011</Year><RecNum>165</RecNum><DisplayText><styleface="superscript">[16]</style></DisplayText><record><rec-number>165</rec-number><foreign-keys><keyapp="EN"db-id="9v2e5rpw1f5zzoewzxn5r5rys929ap0paztt"timestamp="1616587299">165</key></foreign-keys><ref-typename="中文文献">40</ref-type><contributors><authors><author>王佳丽</author><author>黄贤金</author><author>钟太洋</author><author>陈志刚</author></authors><secondary-authors><author>王佳丽</author><author>黄贤金</author><author>钟太洋</author><author>陈志刚</author></secondary-authors></contributors><auth-address>南京大学地理与海洋科学学院国土资源与旅游学系;安徽农业大学经管学院土地资源管理系;</auth-address><titles><title>盐碱地可持续利用研究综述</title><secondary-title>地理学报</secondary-title></titles><periodical><full-title>地理学报</full-title></periodical><pages>673-684</pages><volume>66</volume><number>05</number><keywords><keyword>盐碱地</keyword><keyword>可持续利用</keyword><keyword>技术研发</keyword><keyword>农户行为</keyword><keyword>科学方法</keyword></keywords><dates><year>2011</year></dates><isbn>0375-5444</isbn><call-num>11-1856/P</call-num><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[16]。因此将盐碱土地转变成农田,将大大增加有效田地的使用面积。盐碱土地中的盐主要为氯化钠和硫酸钠等无机盐,严重影响植物种子的发芽和幼苗生长,尤其是高盐环境下的小麦和水稻几乎都不能正常生长,严重影响我国粮食总量。因此,为了提高粮食总量,研究植物中的抗盐基因为其提供了有效方法。1.2干旱和盐害对植物的影响1.2.1干旱对植物的影响土壤含水量约束着植物的生长发育,不同等级的干旱都会引起植物渗透失水,而植物会通过自身调节途径来抵抗干旱现象。植物能迅速地感知不利环境,进而调节胁迫相关基因的表达,最终使植物发生多种反应来适应干旱现象。植物的失水反应会打破离子平衡,引起氧化还原电位升高,产生活性氧,甚至破坏体内的大分子物质ADDINEN.CITE<EndNote><Cite><Author>Anjum</Author><Year>2011</Year><RecNum>52</RecNum><DisplayText><styleface="superscript">[17]</style></DisplayText><record><rec-number>52</rec-number><foreign-keys><keyapp="EN"db-id="9v2e5rpw1f5zzoewzxn5r5rys929ap0paztt"timestamp="1616581478">52</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Anjum,S.A.</author><author>Wang,L.</author><author>Farooq,M.</author><author>Khan,I.</author><author>Xue,L.</author></authors><secondary-authors><author>Anjum,S.A.</author><author>Wang,L.</author><author>Farooq,M.</author><author>Khan,I.</author><author>Xue,L.</author></secondary-authors></contributors><titles><title>MethylJasmonate-InducedAlterationinLipidPeroxidation,AntioxidativeDefenceSystemandYieldinSoybeanUnderDrought</title><secondary-title>JournalofAgronomyandCropScience</secondary-title></titles><periodical><full-title>JournalofAgronomyandCropScience</full-title></periodical><pages>296-301</pages><volume>197</volume><number>4</number><section>296</section><dates><year>2011</year></dates><isbn>09312250</isbn><urls></urls><electronic-resource-num>10.1111/j.1439-037X.2011.00468.x</electronic-resource-num></record></Cite></EndNote>[17]。如细胞膜脂质发生氧化反应,产生丙二醛ADDINEN.CITEADDINEN.CITE.DATA[18,19]。干旱现象可破坏植物的细胞结构,导致植物非正常生长,如植株矮小、叶片枯萎等ADDINEN.CITE<EndNote><Cite><Author>Farooq</Author><Year>2009</Year><RecNum>227</RecNum><DisplayText><styleface="superscript">[20]</style></DisplayText><record><rec-number>227</rec-number><foreign-keys><keyapp="EN"db-id="9v2e5rpw1f5zzoewzxn5r5rys929ap0paztt"timestamp="1616632236">227</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Farooq,M.</author><author>Wahid,A.</author><author>Kobayashi,N.</author><author>Fujita,D.</author><author>Basra,Sma</author></authors></contributors><titles><title>Plantdroughtstress:effects,mechanismsandmanagement</title><secondary-title>AgronomyforSustainableDevelopment</secondary-title></titles><periodical><full-title>AgronomyforSustainableDevelopment</full-title></periodical><pages>185-212</pages><volume>29</volume><number>1</number><dates><year>2009</year></dates><urls></urls></record></Cite></EndNote>[20]。植物对干旱的响应可通过植物形态来判断,如根组织和叶片组织。比如,抗旱性水稻可通过增加根部组织中的导管数量,提高水分使用效率。另外,根组织还可通过增加主根长度和侧根数量来提高植物的吸收和运输水分的能力ADDINEN.CITE<EndNote><Cite><Author>Henry</Author><Year>2011</Year><RecNum>113</RecNum><DisplayText><styleface="superscript">[21]</style></DisplayText><record><rec-number>113</rec-number><foreign-keys><keyapp="EN"db-id="9v2e5rpw1f5zzoewzxn5r5rys929ap0paztt"timestamp="1616581933">113</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Henry,Amelia</author><author>Gowda,VeereshR.P.</author><author>Torres,RolandoO.</author><author>McNally,KennethL.</author><author>Serraj,Rachid</author></authors><secondary-authors><author>Henry,Amelia</author><author>Gowda,VeereshR.P.</author><author>Torres,RolandoO.</author><author>McNally,KennethL.</author><author>Serraj,Rachid</author></secondary-authors></contributors><titles><title>Variationinrootsystemarchitectureanddroughtresponseinrice(Oryzasativa):PhenotypingoftheOryzaSNPpanelinrainfedlowlandfields</title><secondary-title>FieldCropsResearch</secondary-title></titles><periodical><full-title>FieldCropsResearch</full-title></periodical><pages>205-214</pages><volume>120</volume><number>2</number><section>205</section><dates><year>2011</year></dates><isbn>03784290</isbn><urls></urls><electronic-resource-num>10.1016/j.fcr.2010.10.003</electronic-resource-num></record></Cite></EndNote>[21]。此外,植物可以通过叶片向内卷曲包藏气孔和气孔凹陷,来降低水分蒸腾速率ADDINEN.CITE<EndNote><Cite><Author>Gray</Author><Year>2004</Year><RecNum>74</RecNum><DisplayText><styleface="superscript">[22]</style></DisplayText><record><rec-number>74</rec-number><foreign-keys><keyapp="EN"db-id="9v2e5rpw1f5zzoewzxn5r5rys929ap0paztt"timestamp="1616581654">74</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Gray,J.E.</author><author>Hetherington,A.M.</author></authors><secondary-authors><author>Gray,J.E.</author><author>Hetherington,A.M.</author></secondary-authors></contributors><auth-address>DepartmentofMolecularBiologyandBiotechnology,UniversityofSheffield,SheffieldS102TN,UK.</auth-address><titles><title>Plantdevelopment:YODAthestomatalswitch</title><secondary-title>CurrBiol</secondary-title></titles><periodical><full-title>CurrBiol</full-title></periodical><pages>R488-90</pages><volume>14</volume><number>12</number><edition>2004/06/19</edition><keywords><keyword>*Adaptation,Physiological</keyword><keyword>ArabidopsisProteins/genetics/metabolism/*physiology</keyword><keyword>CellDifferentiation/physiology</keyword><keyword>*GeneExpressionRegulation,Plant</keyword><keyword>MAPKinaseKinaseKinases/genetics/metabolism/*physiology</keyword><keyword>Models,Biological</keyword><keyword>Mutation/genetics</keyword><keyword>PlantLeaves/genetics/*physiology</keyword><keyword>*PlantPhysiologicalPhenomena</keyword><keyword>Plants/*embryology</keyword><keyword>SerineEndopeptidases/metabolism</keyword></keywords><dates><year>2004</year><pub-dates><date>Jun22</date></pub-dates></dates><isbn>0960-9822(Print) 0960-9822(Linking)</isbn><accession-num>15203025</accession-num><urls><related-urls><url>/pubmed/15203025</url></related-urls></urls><electronic-resource-num>10.1016/j.cub.2004.06.019</electronic-resource-num></record></Cite></EndNote>[22]。1.2.2盐害对植物的影响盐害会抑制植物正常生长发育和降低生产效率ADDINEN.CITE<EndNote><Cite><Author>Hussain</Author><Year>2015</Year><RecNum>89</RecNum><DisplayText><styleface="superscript">[23]</style></DisplayText><record><rec-number>89</rec-number><foreign-keys><keyapp="EN"db-id="9v2e5rpw1f5zzoewzxn5r5rys929ap0paztt"timestamp="1616581762">89</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Hussain,M.Iftikhar</author><author>Lyra,Dionyssia-Angeliki</author><author>Farooq,Muhammad</author><author>Nikoloudakis,Nikolaos</author><author>Khalid,Nauman</author></authors><secondary-authors><author>Hussain,M.Iftikhar</author><author>Lyra,Dionyssia-Angeliki</author><author>Farooq,Muhammad</author><author>Nikoloudakis,Nikolaos</author><author>Khalid,Nauman</author></secondary-authors></contributors><titles><title>Saltanddroughtstressesinsafflower:areview</title><secondary-title>AgronomyforSustainableDevelopment</secondary-title></titles><periodical><full-title>AgronomyforSustainableDevelopment</full-title></periodical><volume>36</volume><number>1</number><dates><year>2015</year></dates><isbn>1774-0746 1773-0155</isbn><urls></urls><electronic-resource-num>10.1007/s13593-015-0344-8</electronic-resource-num></record></Cite></EndNote>[23]。盐处理时,植物的渗透势短期内迅速升高,伴随着过量氧化物质和无机离子的积累对植物造成严重的损害ADDINEN.CITE<EndNote><Cite><Author>Munns</Author><Year>2008</Year><RecNum>50</RecNum><DisplayText><styleface="superscript">[24]</style></DisplayText><record><rec-number>50</rec-number><foreign-keys><keyapp="EN"db-id="9v2e5rpw1f5zzoewzxn5r5rys929ap0paztt"timestamp="1616581465">50</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Munns,R.</author><author>Tester,M.</author></authors><secondary-authors><author>Munns,R.</author><author>Tester,M.</author></secondary-authors></contributors><auth-address>CSIROPlantIndustry,Canberra,ACT,Australia.rana.munns@csiro.au</auth-address><titles><title>Mechanismsofsalinitytolerance</title><secondary-title>AnnuRevPlantBiol</secondary-title></titles><periodical><full-title>AnnuRevPlantBiol</full-title></periodical><pages>651-81</pages><volume>59</volume><edition>2008/05/01</edition><keywords><keyword>Hordeum/physiology</keyword><keyword>Oryza/physiology</keyword><keyword>OsmoticPressure</keyword><keyword>OxidativeStress</keyword><keyword>Photosynthesis</keyword><keyword>*PlantPhysiologicalPhenomena</keyword><keyword>PlantShoots/metabolism</keyword><keyword>Plants/genetics</keyword><keyword>SignalTransduction</keyword><keyword>Sodium/metabolism</keyword><keyword>SodiumChloride/metabolism</keyword><keyword>Thermodynamics</keyword></keywords><dates><year>2008</year></dates><isbn>1543-5008(Print) 1543-5008(Linking)</isbn><accession-num>18444910</accession-num><urls><related-urls><url>/pubmed/18444910</url></related-urls></urls><electronic-resource-num>10.1146/annurev.arplant.59.032607.092911</electronic-resource-num></record></Cite></EndNote>[24],这种响应在高浓度盐处理时尤其明显。此外,盐处理会通过降低土壤水势来阻碍植物吸水,进而增加植物脱水的概率ADDINEN.CITEADDINEN.CITE.DATA[25-27]。此反应可由少量盐分引起,并且发生速度较快ADDINEN.CITEADDINEN.CITE.DATA[28,29]。土地盐碱化会大幅度地减少植物量,并且其问题日益突出ADDINEN.CITEADDINEN.CITE.DATA[30,31]。一些研究提到,在盐处理时植物体内的水分会从原生质体流向质外体,降低叶片细胞间隙中的盐浓度,进而减少无机离子对细胞的伤害ADDINEN.CITEADDINEN.CITE.DATA[32]。对植物造成盐害的主要为钠离子和氯离子,会改变植物的渗透势,并对植物造成离子毒害ADDINEN.CITE<EndNote><Cite><Author>Munns</Author><Year>2011</Year><RecNum>73</RecNum><DisplayText><styleface="superscript">[33]</style></DisplayText><record><rec-number>73</rec-number><foreign-keys><keyapp="EN"db-id="9v2e5rpw1f5zzoewzxn5r5rys929ap0paztt"timestamp="1616581644">73</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="BookSection">5</ref-type><contributors><authors><author>Munns,Rana</author></authors><secondary-authors><author>Munns,Rana</author></secondary-authors></contributors><titles><title>PlantAdaptationstoSaltandWaterStress</title><secondary-title>PlantResponsestoDroughtandSalinityStress-DevelopmentsinaPost-GenomicEra</secondary-title><tertiary-title>AdvancesinBotanicalResearch</tertiary-title></titles><pages>1-32</pages><dates><year>2011</year></dates><isbn>9780123876928</isbn><urls></urls><electronic-resource-num>10.1016/b978-0-12-387692-8.00001-1</electronic-resource-num></record></Cite></EndNote>[33]。高浓度盐处理,抑制了植物根通过渗透作用从土壤中吸水的反应。此外,这种情况还会导致气孔关闭ADDINEN.CITE<EndNote><Cite><Author>Asrar</Author><Year>2017</Year><RecNum>87</RecNum><DisplayText><styleface="superscript">[34]</style></DisplayText><record><rec-number>87</rec-number><foreign-keys><keyapp="EN"db-id="9v2e5rpw1f5zzoewzxn5r5rys929ap0paztt"timestamp="1616581748">87</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Asrar,Hina</author><author>Hussain,Tabassum</author><author>Hadi,SyedaMidhatSabahat</author><author>Gul,Bilquees</author><author>Nielsen,BrentL.</author><author>Khan,M.Ajmal</author></authors><secondary-authors><author>Asrar,Hina</author><author>Hussain,Tabassum</author><author>Hadi,SyedaMidhatSabahat</author><author>Gul,Bilquees</author><author>Nielsen,BrentL.</author><author>Khan,M.Ajmal</author></secondary-authors></contributors><titles><title>SalinityinducedchangesinlightharvestingandcarbonassimilatingcomplexesofDesmostachyabipinnata(L.)Staph</title><secondary-title>EnvironmentalandExperimentalBotany</secondary-title></titles><periodical><full-title>EnvironmentalandExperimentalBotany</full-title></periodical><pages>86-95</pages><volume>135</volume><section>86</section><dates><year>2017</year></dates><isbn>00988472</isbn><urls></urls><electronic-resource-num>10.1016/j.envexpbot.2016.12.008</electronic-resource-num></record></Cite></EndNote>[34],影响光合作用,从而产生过量的活性氧物质ADDINEN.CITE<EndNote><Cite><Author>Pinheiro</Author><Year>2011</Year><RecNum>70</RecNum><DisplayText><styleface="superscript">[35]</style></DisplayText><record><rec-number>70</rec-number><foreign-keys><keyapp="EN"db-id="9v2e5rpw1f5zzoewzxn5r5rys929ap0paztt"timestamp="1616581624">70</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Pinheiro,C.</author><author>Chaves,M.M.</author></authors><secondary-authors><author>Pinheiro,C.</author><author>Chaves,M.M.</author></secondary-authors></contributors><auth-address>InstitutodeTecnologiaQuimicaeBiologica,UniversidadeNovadeLisboa,AvdaRepublica-EAN,2780-157Oeiras,Portugal.</auth-address><titles><title>Photosynthesisanddrought:canwemakemetabolicconnectionsfromavailabledata?</title><secondary-title>JExpBot</secondary-title></titles><periodical><full-title>JExpBot</full-title></periodical><pages>869-82</pages><volume>62</volume><number>3</number><edition>2010/12/22</edition><keywords><keyword>Arabidopsis/genetics/*metabolism</keyword><keyword>Droughts</keyword><keyword>GeneExpressionRegulation,Plant</keyword><keyword>Hordeum/genetics/*metabolism</keyword><keyword>*Photosynthesis</keyword><keyword>PlantGrowthRegulators/metabolism</keyword><keyword>Water/*metabolism</keyword></keywords><dates><year>2011</year><pub-dates><date>Jan</date></pub-dates></dates><isbn>1460-2431(Electronic) 0022-0957(Linking)</isbn><accession-num>21172816</accession-num><urls><related-urls><url>/pubmed/21172816</url></related-urls></urls><electronic-resource-num>10.1093/jxb/erq340</electronic-resource-num></record></Cite></EndNote>[35]。已在多种植物中报道了盐处理会严重影响光合系统的正常工作,比如高粱ADDINEN.CITEADDINEN.CITE.DATA[36]和向日葵ADDINEN.CITE<EndNote><Cite><Author>Taher</Author><Year>2018</Year><RecNum>53</RecNum><DisplayText><styleface="superscript">[37]</style></DisplayText><record><rec-number>53</rec-number><foreign-keys><keyapp="EN"db-id="9v2e5rpw1f5zzoewzxn5r5rys929ap0paztt"timestamp="1616581485">53</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Taher,Mehdi</author><author>Beyaz,Ramazan</author><author>Javani,Marieh</author><author>Gürsoy,Mehtap</author><author>Yildiz,Mustafa</author></authors><secondary-authors><author>Taher,Mehdi</author><author>Beyaz,Ramazan</author><author>Javani,Marieh</author><author>Gürsoy,Mehtap</author><author>Yildiz,Mustafa</author></secondary-authors></contributors><titles><title>Morphologicalandbiochemicalchangesinresponsetosalinityinsunflower(HelianthusannusL.)cultivars</title><secondary-title>ItalianJournalofAgronomy</secondary-title></titles><periodical><full-title>ItalianJournalofAgronomy</full-title></periodical><pages>141-147</pages><section>141</section><dates><year>2018</year></dates><isbn>2039-6805 1125-4718</isbn><urls></urls><electronic-resource-num>10.4081/ija.2018.1096</electronic-resource-num></record></Cite></EndNote>[37]。除了破坏光合系统,盐处理也会造成细胞膜的损伤,产生许多细胞膜氧化物质丙二醛,从而激活体内防御系统ADDINEN.CITE<EndNote><Cite><Author>田晓艳</Author><Year>2009</Year><RecNum>164</RecNum><DisplayText><styleface="superscript">[38]</style></DisplayText><record><rec-number>164</rec-number><foreign-keys><keyapp="EN"db-id="9v2e5rpw1f5zzoewzxn5r5rys929ap0paztt"timestamp="1616587240">164</key></foreign-keys><ref-typename="中文文献">40</ref-type><contributors><authors><author>田晓艳</author><author>刘延吉</author><author>张蕾</author><author>张弘</author><author>刘沛含</author></authors><secondary-authors><author>田晓艳</author><author>刘延吉</author><author>张蕾</author><author>张弘</author><author>刘沛含</author></secondary-authors></contributors><auth-address>辽宁石油化工大学环境与生物工程学院;沈阳农业大学生物科学技术学院;</auth-address><titles><title>盐胁迫对景天三七保护酶系统、MDA、Pro及可溶性糖的影响</title><secondary-title>草原与草坪</secondary-title></titles><periodical><full-title>草原与草坪</full-title></periodical><pages>11-14</pages><number>06</number><keywords><keyword>景天三七</keyword><keyword>盐胁迫</keyword><keyword>MDA</keyword><keyword>保护酶系统</keyword><keyword>Pro</keyword><keyword>可溶性糖</keyword></keywords><dates><year>2009</year></dates><isbn>1009-5500</isbn><call-num>62-1156/S</call-num><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[38]。植物中的抗氧化酶用于清除体内的ROS,保护细胞ADDINEN.CITE<EndNote><Cite><Author>Tiffin</Author><Year>1959</Year><RecNum>223</RecNum><DisplayText><styleface="superscript">[39]</style></DisplayText><record><rec-number>223</rec-number><foreign-keys><keyapp="EN"db-id="9v2e5rpw1f5zzoewzxn5r5rys929ap0paztt"timestamp="1616591021">223</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Tiffin,L.O.</author><author>Brown,J.C.</author></authors><secondary-authors><author>Tiffin,L.O.</author><author>Brown,J.C.</author></secondary-authors></contributors><titles><title>AbsorptionofIronfromIronChelatebySunflowerRoots</title><secondary-title>Science</secondary-title><alt-title>Science(NewYork,N.Y.)</alt-title></titles><periodical><full-title>Science</full-title></periodical><pages>274-5</pages><volume>130</volume><number>3370</number><edition>1959/07/31</edition><dates><year>1959</year><pub-dates><date>Jul31</date></pub-dates></dates><isbn>0036-8075(Print) 0036-8075</isbn><accession-num>17813680</accession-num><urls></urls><electronic-resource-num>10.1126/science.130.3370.274-a</electronic-resource-num><remote-database-provider>NLM</remote-database-provider><language>eng</language></record></Cite></EndNote>[39]。1.3植物对干旱和盐处理的响应1.3.1气孔调节气孔为植物所独有的器官,在控制植物呼吸和调控蒸腾速率中起作用,它由肾形或哑铃形的保卫细胞组成ADDINEN.CITEADDINEN.CITE.DATA[40]。两种形态的保卫细胞,都是利用细胞壁的厚度不均来控制气孔开闭。当保卫细胞吸水时,保卫细胞壁薄部位的伸缩性能好,向外弯曲或两边膨胀,气孔打开。相反情况下,气孔关闭。因此,植物保卫细胞参与调节蒸腾速率的过程ADDINEN.CITEADDINEN.CITE.DATA[41]。所以,当植物保卫细胞吸水而水势升高时,植物气孔打开,促进蒸腾作用,维持植物体的水分平衡。相反,当保卫细胞失水而水势降低时,气孔关闭,减少植物体内水分进一步散失ADDINEN.CITE<EndNote><Cite><Author>Lee</Author><Year>2012</Year><RecNum>11</RecNum><DisplayText><styleface="superscript">[42]</style></DisplayText><record><rec-number>11</rec-number><foreign-keys><keyapp="EN"db-id="9v2e5rpw1f5zzoewzxn5r5rys929ap0paztt"timestamp="1616581246">11</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Lee,S.C.</author><author>Luan,S.</author></authors><secondary-authors><author>Lee,S.C.</author><author>Luan,S.</author></secondary-authors></contributors><auth-address>SchoolofBiologicalSciences(BK21program),Chung-AngUniversity,Seoul,Korea.</auth-address><titles><title>ABAsignaltransductionatthecrossroadofbioticandabioticstressresponses</title><secondary-title>PlantCellEnviron</secondary-title></titles><periodical><full-title>PlantCellEnviron</full-title></periodical><pages>53-60</pages><volume>35</volume><number>1</number><edition>2011/09/20</edition><keywords><keyword>AbscisicAcid/*metabolism</keyword><keyword>Droughts</keyword><keyword>GeneExpressionRegulation,Plant/physiology</keyword><keyword>PlantGrowthRegulators/*metabolism</keyword><keyword>*PlantPhysiologicalPhenomena</keyword><keyword>PlantProteins/genetics/metabolism</keyword><keyword>PlantStomata</keyword><keyword>Plants/genetics/metabolism</keyword><keyword>SignalTransduction/*physiology</keyword><keyword>Stress,Physiological/*physiology</keyword></keywords><dates><year>2012</year><pub-dates><date>Jan</date></pub-dates></dates><isbn>1365-3040(Electronic) 0140-7791(Linking)</isbn><accession-num>21923759</accession-num><urls><related-urls><url>/pubmed/21923759</url></related-urls></urls><electronic-resource-num>10.1111/j.1365-3040.2011.02426.x</electronic-resource-num></record></Cite></EndNote>[42]。而气孔密度/导度与植物对水胁迫信号的响应有关ADDINEN.CITEADDINEN.CITE.DATA[43]。当植物处于缺水状态下,植物会迅速积累脱落酸,进而诱导保卫细胞内涌入大量的钙离子。此时因保卫细胞的渗透势升高而失水,导致气孔导度减小,提高植物的抗旱性ADDINEN.CITEADDINEN.CITE.DATA[44,45]。1.3.2渗透调节通过渗透调节来应对干旱和盐胁迫已经得到大家广泛的认同,并且成为研究植物抗旱性应用最热门的机制之一ADDINEN.CITE<EndNote><Cite><Author>黎裕</Author><Year>1994</Year><RecNum>182</RecNum><DisplayText><styleface="superscript">[46]</style></DisplayText><record><rec-number>182</rec-number><foreign-keys><keyapp="EN"db-id="9v2e5rpw1f5zzoewzxn5r5rys929ap0paztt"timestamp="1616588324">182</key></foreign-keys><ref-typename="中文文献">40</ref-type><contributors><authors><author>黎裕</author></authors><secondary-authors><author>黎裕</author></secondary-authors></contributors><auth-address>中国农业科学院作物品种资源研究所!北京,100081</auth-address><titles><title>植物的渗透调节与其它生理过程的关系及其在作物改良中的应用</title><secondary-title>植物生理学通讯</secondary-title></titles><periodical><full-title>植物生理学通讯</full-title></periodical><pages>377-383</pages><number>05</number><keywords><keyword>渗透调节</keyword><keyword>气孔导度</keyword><keyword>水分亏缺</keyword><keyword>气孔调节</keyword><keyword>籽粒产量</keyword><keyword>光合活性</keyword><keyword>水分胁迫</keyword><keyword>作物改良</keyword><keyword>生理过程</keyword></keywords><dates><year>1994</year></dates><isbn>0412-0922</isbn><call-num>31-1350/Q</call-num><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[46]。渗透调节一般发生在水分胁迫过程中,诱导其发生是一个缓慢的过程。植物渗透调节的物质包括简单离子和有机物质。简单离子包括钾离子、氯离子和钙离子等,此外钙离子还可在信号传递中起作用。另一类是有机化合物:脯氨酸、可溶性糖和甜菜碱等ADDINEN.CITE<EndNote><Cite><Author>朱维琴</Author><Year>2003</Year><RecNum>185</RecNum><DisplayText><styleface="superscript">[47]</style></DisplayText><record><rec-number>185</rec-number><foreign-keys><keyapp="EN"db-id="9v2e5rpw1f5zzoewzxn5r5rys929ap0paztt"timestamp="1616588546">185</key></foreign-keys><ref-typename="中文文献">40</ref-type><contributors><authors><author>朱维琴</author><author>吴良欢</author><author>陶勤南</author></authors><secondary-authors><author>朱维琴</author><author>吴良欢</author><author>陶勤南</author></secondary-authors></contributors><auth-address>浙江大学环境与资源学院,浙江大学环境与资源学院,浙江大学环境与资源学院浙江杭州310029,浙江杭州310029,浙江杭州310029</auth-address><titles><title>干旱逆境下不同品种水稻叶片有机渗透调节物质变化研究</title><secondary-title>土壤通报</secondary-title></titles><periodical><full-title>土壤通报</full-title></periodical><pages>25-28</pages><number>01</number><keywords><keyword>干旱胁迫</keyword><keyword>聚乙二醇(PEG)</keyword><keyword>渗调物质</keyword><keyword>水稻</keyword></keywords><dates><year>2003</year></dat

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论