版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F,若AB=6,则BF的长为()A.6 B.7 C.8 D.102.估计的运算结果应在()A.5到6之间 B.6到7之间 C.7到8之间 D.8到9之间3.已知,则值为()A.10 B.9 C.12 D.34.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题意,得到的方程是()A. B. C. D.5.在平面直角坐标系中,点位于哪个象限?()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误的是()A.扇形统计图能反映各部分在总体中所占的百分比B.每天阅读30分钟以上的居民家庭孩子超过50%C.每天阅读1小时以上的居民家庭孩子占20%D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°7.若正多边形的内角和是,则该正多边形的一个外角为()A. B. C. D.8.已知多项式可以写成两个因式的积,又已知其中一个因式为,那么另一个因式为()A. B. C. D.9.下列代数式中,分式有______个,,,,,,,,A.5 B.4 C.3 D.210.某芯片的电子元件的直径为0.0000034米,该电子元件的直径用科学记数法可以表示为()A.0.34×10-6米 B.3.4×10-6米 C.34×10-5米 D.3.4×10-5米11.已知图中的两个三角形全等,则的度数是()A.72° B.60° C.58° D.50°12.如图所示,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动,行走2012m停下,则这个微型机器人停在()A.点A处 B.点B处 C.点C处 D.点E处二、填空题(每题4分,共24分)13.如图,OC平分∠AOB,D为OC上一点,DE⊥OB于E,若DE=7,则D到OA的距离为____.14.=________.15.已知一个三角形的三个内角度数之比为2:3:5,则它的最大内角等于_____度.16.若(x+m)(x+3)中不含x的一次项,则m的值为__.17.近似数3.1415926用四舍五入法精确到0.001的结果是_____.18.计算:__________.三、解答题(共78分)19.(8分)计算:(1).(2).20.(8分)计算:21.(8分)计算:(1);(2).22.(10分)八(1)班同学到野外上数学活动课,为测量池塘两端A、B的距离,设计了如下方案:(Ⅰ)如图5-1,先在平地上取一个可直接到达A、B的点C,连接AC、BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的距离即为AB的长;(Ⅱ)如图5-2,先过B点作AB的垂线BF,再在BF上取C、D两点使BC=CD,接着过D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离.阅读后1回答下列问题:
(1)方案(Ⅰ)是否可行?说明理由.(2)方案(Ⅱ)是否可行?说明理由.(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是;若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立?.23.(10分)阅读(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是________;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.24.(10分)A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(2)当它们行驶7了小时时,两车相遇,求乙车速度.25.(12分)在平面直角坐标系网格中,格点A的位置如图所示:(1)若点B坐标为(2,3),请你画出△AOB;(2)若△AOB与△A′O′B′关于y轴对称,请你画出△A′O′B';(3)请直接写出线段AB的长度.26.如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度(单位:)与下行时间(单位:)之间具有函数关系,乙离一楼地面的高度(单位:)与下行时间(单位:)的函数关系如图2所示.(1)求关于的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.
参考答案一、选择题(每题4分,共48分)1、C【解析】∵∠ACB=90°,D为AB的中点,AB=6,∴CD=AB=1.又CE=CD,∴CE=1,∴ED=CE+CD=2.又∵BF∥DE,点D是AB的中点,∴ED是△AFB的中位线,∴BF=2ED=3.故选C.2、C【分析】先根据实数的混合运算化简,再估算的值即可.【详解】==.∵5<<6,∴7<<8故的运算结果应在7和8之间.故选:C.【点睛】本题考查了估算无理数的大小,其常见的思维方法:用有理数逼近无理数,求无理数的近似值.3、A【分析】由题意根据等式和分式的基本性质以及完全平方公式对式子进行变形,进而整体代入求解.【详解】解:由,可知,已知,等式两边同时除以可得:,将,代入,所以.故选:A.【点睛】本题考查完全平方公式,结合等式和分式的基本性质运用整体替换的思想进行分析是解题的关键.4、B【解析】设小李每小时走x千米,则小张每小时走(x+1)千米,根据题意可得等量关系:小李所用时间-小张所用时间=半小时,根据等量关系列出方程即可.【详解】解:设小李每小时走x千米,依题意得:故选B.【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系列出方程.5、D【分析】根据各象限内点的坐标特征解答即可.【详解】解:点坐标为,则它位于第四象限,故选D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限.6、C【解析】根据扇形统计图中的百分比的意义逐一判断即可得.【详解】解:A.扇形统计图能反映各部分在总体中所占的百分比,此选项正确;B.每天阅读30分钟以上的居民家庭孩子的百分比为1-40%=60%,超过50%,此选项正确;C.每天阅读1小时以上的居民家庭孩子占30%,此选项错误;D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是360°×(1-40%-10%-20%)=108°,此选项正确;故选:C.【点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.7、C【分析】根据多边形的内角和公式求出多边形的边数,再根据多边形的外角和是固定的,依此可以求出多边形的一个外角.【详解】正多边形的内角和是,多边形的边数为多边形的外角和都是,多边形的每个外角故选.【点睛】本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.8、B【分析】设出另一个因式是(2x+a),然后根据多项式乘多项式的法则得出它的积,然后根据对应项的系数相等即可得出答案.【详解】解:设多项式,另一个因式为,
∵多项式有一个因式,
则,
∴3a+10=13,5a+4=9,2a=2,
∴a=1,
∴另一个因式为故选:B【点睛】此题主要考查了因式分解的意义,正确假设出另一个因式是解题关键.9、B【分析】根据判断分式的依据:看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,对各选项判断即可.【详解】解:解:根据分式的定义,可知分式有:,,,,共4个,
故选:B.【点睛】本题考查分式的定义,能熟记分式的定义的内容是解题的关键,注意:分式的分母中含有字母.10、B【解析】试题解析:0.0000034米米.故选B.11、D【分析】根据全等三角形的性质中对应角相等,可得此组对应角为线段a和c的夹角,由此可知=50°即可.【详解】∵两个三角形全等,∴∠α=50°.故选D.【点睛】此题考查全等三角形的性质,学生不仅需要掌握全等三角形的性质,而且要准确识别图形,确定出对应角是解题的关键.12、C【分析】根据等边三角形和全等三角形的性质,可以推出,每行走一圈一共走了6个1m,2012÷6=335…2,行走了335圈又两米,即落到C点.【详解】解:∵两个全等的等边三角形的边长为1m,∴机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动一圈,即为6m,∵2012÷6=335…2,即正好行走了335圈又两米,回到第三个点,∴行走2012m停下,则这个微型机器人停在C点.故选:C.【点睛】本题主要考查全等三角形的性质、等边三角形的性质,解题的关键在于求出2012为6的倍数余数是几.二、填空题(每题4分,共24分)13、1.【分析】从已知条件开始思考,结合角平分线上的点到角两边的距离相等可知D到OA的距离为1.【详解】解:∵OC平分∠AOB,D为OC上任一点,且DE⊥OB,DE=1,∴D到OA的距离等于DE的长,即为1.故答案为:1.【点睛】本题考查了角平分线的性质;熟练掌握角平分线的性质,是正确解题的前提.14、1.【解析】试题分析:先算括号里的,再开方..故答案是1.考点:算术平方根.15、1【分析】利用三角形的内角和定理即可得.【详解】设最小角的度数为2x,则另两个角的度数分别为3x,5x,其中5x为最大内角由三角形的内角和定理得:解得:则故答案为:1.【点睛】本题考查了三角形的内角和定理、一元一次方程的几何应用,依据题意正确建立方程是解题关键.16、-1【分析】把式子展开,找到x的一次项的所有系数,令其为2,可求出m的值.【详解】解:∵(x+m)(x+1)=x2+(m+1)x+1m,又∵结果中不含x的一次项,∴m+1=2,解得m=-1.【点睛】本题主要考查了多项式乘多项式的运算,注意当多项式中不含有哪一项时,即这一项的系数为2.17、3.2【分析】根据近似数的精确度,用四舍五入法,即可求解.【详解】近似数3.1415926用四舍五入法精确到1.111的结果为3.2.故答案为:3.2.【点睛】本题主要考查近似数的精确度,掌握四舍五入法,是解题的关键.18、.【详解】解:===a-1故答案为:a-1.三、解答题(共78分)19、(1);(2).【分析】(1)根据完全平方公式和单项式乘以多项式的法则分别计算各项,再合并同类项即可;(2)原式中括号内分别根据多项式乘以多项式的法则和平方差公式计算,合并同类项后再根据多项式除以单项式的法则计算即得结果.【详解】解:(1);(2).【点睛】本题考查了整式的混合运算,属于基础题型,熟练掌握整式混合运算的法则是解题关键.20、【分析】利用平方差公式和完全平方公式进行计算,然后合并同类项,即可求出答案.【详解】解:原式,,.【点睛】本题考查了整式的混合运算,解题的关键是熟练掌握平方差公式和完全平方公式进行计算.21、(1);(2).【分析】(1)根据单项式除以单项式的法则计算,把系数、相同底数的幂分别相除作为商的因式,对于只在被除数里含有的字母,连同他的指数作为商的一个因式;(2)完全平方公式的应用,多项式乘以多项式的应用,合并同类项的化简.【详解】(1)原式;(2)原式,故答案为:(1);(2).【点睛】(1)利用单项式除以单项式法则计算,要注意系数的符号问题,同底数幂相除,底数不变,指数相减;(2)完全平方公式的应用,多项式乘以多项式的法则,以及合并同类项,注意括号前面是负号时,去括号变符号的问题.22、(1)见解析;(2)见解析;(3)∠ABD=∠BDE=90°,成立.【解析】(1)由题意可证明△ACB≌△DCE,AB=DE,故方案(Ⅰ)可行;
(2)由题意可证明△ABC≌△EDC,AB=ED,故方案(Ⅱ)可行;
(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是∠ABD=∠BDE;若仅满足∠ABD=∠BDE≠90°,仍可以证明△ABC≌△EDC,则也可得到AB=ED.【详解】(1)在△ACB和△DCE中∵AC=DC∠ACB=∠DCEBC=EC∴△ACB≌△DCE(SAS)∴AB=DE,故方案(Ⅰ)可行;(2)∵CB⊥AB、CD⊥DE∴∠ABC=∠EDC=90°在△ABC和△EDC中∵∠ABC=∠EDCBC=DC∠ACB=∠ECD∴△ABC≌△EDC(ASA)∴ED=AB,故方案(Ⅱ)可行;(3)作BF⊥AB,ED⊥BF的目的是作∠ABC=∠EDC=90°;
如果∠ABD=∠BDE≠90°,仍可以利用ASA证明△ABC≌△EDC,则也可得到AB=ED.故答案为:(1)见解析;(2)见解析;(3)∠ABD=∠BDE=90°,成立.【点睛】本题考查全等三角形的应用,关键是掌握全等三角形的判定与性质,证明三角形的全等是证明线段相等的一种重要方法.23、(1)2<AD<8;(2)证明见解析;(3)BE+DF=EF;理由见解析.【分析】(1)延长AD至E,使DE=AD,由SAS证明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三边关系求出AE的取值范围,即可得出AD的取值范围;(2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出BE+BM>EM即可得出结论;(3)延长AB至点N,使BN=DF,连接CN,证出∠NBC=∠D,由SAS证明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,证出∠ECN=70°=∠ECF,再由SAS证明△NCE≌△FCE,得出EN=EF,即可得出结论.【详解】(1)解:延长AD至E,使DE=AD,连接BE,如图①所示:∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,BD=CD,∠BDE=∠CDA,DE=AD,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为2<AD<8;(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示:同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF;(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,BN=DF,∠NBC=∠D,BC=DC,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,CN=CF,∠ECN=∠ECF,CE=CE,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.考点:全等三角形的判定和性质;三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年网络安全与防护技术专业测试题
- 2026年网络安全编程与防护技术试题
- 2026年历史文化知识与文化遗产保护考试题
- 2026年税法与财务规划融合能力考查试题
- 2026年航空航天产业航空器设计与制造技术试题
- 2026年建筑消防设施设计与操作实务模拟试题库
- 2026年财务经理专业笔试题目及答案
- 中国家电跨境出海关税政策与本土化运营报告
- 中国家族基金会发展现状与传承规划报告
- 中国家居建材行业经销商体系变革与管理升级研究报告
- 2025至2030年中国冷冻食品行业市场调研及行业投资策略研究报告
- 压空罐安全知识培训课件
- 2025年江苏南京市建邺区招聘第一批购岗人员5人笔试模拟试题及答案详解1套
- 市场保洁管理方案(3篇)
- 医院调料杂粮副食品采购项目方案投标文件(技术方案)
- 静脉给药的安全管理
- 银行从业者观《榜样》心得体会
- 农村年底活动方案
- 2024届山东省威海市高三二模数学试题(解析版)
- 设备管理奖罚管理制度
- LINE6效果器HD300中文说明书
评论
0/150
提交评论