上海公务员考试行测(数量关系能力)真题含答案_第1页
上海公务员考试行测(数量关系能力)真题含答案_第2页
上海公务员考试行测(数量关系能力)真题含答案_第3页
上海公务员考试行测(数量关系能力)真题含答案_第4页
上海公务员考试行测(数量关系能力)真题含答案_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海公务员考试行测(数量关系能力)真题第一部分单选题(100题)1、2,3,10,15,26,35,()

A、40

B、45

C、50

D、55

【答案】:答案:C

解析:2=1平方+1,3=2平方-1,10=3平方+1,15=4平方-1,26=5平方+1,35=6平方-1,问号=7平方+1,问号=50。故选C。2、一项考试共有35道试题,答对一题得2分,答错一题扣1分,不答则不得分。一名考生一共得了47分,那么,他最多答对()题。

A、26

B、27

C、29

D、30

【答案】:答案:B

解析:设答对了x道,答错y道,则可知2x-y=47,存在没答题目的情况,因此x+y≤35。题干问最多答对题数,则从最大的开始代入。D选项,x=30,代入2x-y=47,解得y=13,此时x+y超过35,不符;C项x=29,y=11,此时x+y超过35,不符;B项x=27,y=7,剩余1道没答,符合题意。故选B。3、一个四边形广场,它的四边长分别是60米、72米、96米、84米,现在四边上植树,四角需种树,而且每两棵树的间隔相等,那么,至少要种多少棵树?()

A、22

B、25

C、26

D、30

【答案】:答案:C

解析:根据四角需种树,且每两棵树的间隔相等可知,间隔距离应为四边边长的公约数;要使棵树至少,则间隔距离要尽量最大,公约数最大为12(60、72、96、84的最大公约数)。故棵数=段数=长度÷间距=(60+72+84+96)÷12=26(棵)。故选C。4、某木场有甲,乙,丙三位木匠师傅生产桌椅,甲每天能生产12张书桌或13把椅子;乙每天能生产9张书桌或12把椅子,丙每天能生产9张书桌或15把椅子,现在书桌和椅子要配套生产(每套一张书桌一把椅子),则7天内这三位师傅最多可以生产桌椅()套。

A、116

B、129

C、132

D、142

【答案】:答案:B

解析:将甲、乙、丙三位木匠师傅生产桌椅的效率列表如下,分析可知,甲生产书桌的相对效率最高,丙生产椅子的相对效率最高,则安排甲7天全部生产书桌,丙7天全部生产椅子,乙协助甲丙完成。甲7天可生产桌子12×7=84(张),丙7天可生产椅子15×7=105(把)。设乙生产书桌x天,则生产椅子(7-x)天,当生产的书桌数与椅子数相同时,获得套数最多,可列方程84+9x=105+12×(7-x),解得x=5,则乙可生产书桌9×5=45(张)。故7天内这三位师傅最多可以生产桌椅84+45=129(套)。故选B。5、甲、乙两位村民去县城A商店买东西,他们同时在村口出发,甲骑车而乙步行,但他们又同时到达A商店。途中甲休息的时间是乙步行时间的5/6,而乙休息的时间是甲骑车时间的1/2,则甲、乙途中休息的时间比是()。

A、4:1

B、5:1

C、5:2

D、6:1

【答案】:答案:B

解析:设乙步行时间为6x,甲骑车时间为2y,则甲休息的时间为5x,乙休息的时间为y,则由“他们同时在村口出发,甲骑车而乙步行,但他们又同时到达A商店”可得:2y+5x=6x+y,解得x:y=1:1。因此,甲、乙途中休息的时间比是5x:y=5:1。故选B。6、一艘轮船从甲地到乙地每小时航行30千米,然后按原路返回,若想往返的平均速度为每小时40千米,则返回时每小时航行()千米。

A、80

B、75

C、60

D、96

【答案】:答案:C

解析:设甲乙两地的距离为1,则轮船从甲地到乙地所用的时间为1/30,如果往返的平均速度为40千米,则往返一次所用的时间为2/40,那么从乙地返回甲地所用时间为2/40-1/30=1/60,所以返回时的速度为每小时1/(1/60)=60千米。故选C。7、某商店花10000元进了一批商品,按期望获得相当于进价25%的利润来定价。结果只销售了商品总量的30%。为尽快完成资金周转,商店决定打折销售,这样卖完全部商品后,亏本1000元。问商店是按定价打几折销售的?()

A、九折

B、七五折

C、六折

D、四八折

【答案】:答案:C

解析:由只销售了总量的30%知,打折前销售额为10000×(1+25%)×30%=3750元;设此商品打x折出售,剩余商品打折后,销售额为10000×(1+25%)×(1-30%)x=8750x。根据亏本1000元,可得3750+8750x-10000=﹣1000,解得x=0.6,即打六折。故选C。8、某年的10月里有5个星期六,4个星期日,则这年的10月1日是?()

A、星期一

B、星期二

C、星期三

D、星期四

【答案】:答案:D

解析:10月有31天,因为有5个星期六,4个星期日,所以10月31日是星期六。31=4×7+3,所以10月3日也是星期六,故10月1日是星期四。故选D。9、5,10,20,(),80

A、30

B、40

C、50

D、60

【答案】:答案:B

解析:公比为2的等比数列。故选B。10、某种茶叶原价30元一包,为了促销,降低了价格,销量增加了二倍,收入增加了五分之三,则一包茶叶降价()元。

A、12

B、14

C、13

D、11

【答案】:答案:B

解析:设原来茶叶的销量为1,那么现在销量为3。原来收入为30元,现在收入为30×(1+3/5)=48元,每包茶叶为48÷3=16元,降价30-16=14元。故选B。11、在列车平行轨道上,甲、乙两列火车相对开来。甲列火车长236米,每秒行38米;乙列火车长275米,已知这两列火车错车开过用了7秒钟,则乙列火车按这个速度通过长为2000米的隧道需要()秒钟。

A、65

B、70

C、75

D、80

【答案】:答案:A

解析:236+275=(38+v)×7,所以v=35,那么275+2000=35t,t=65,选A。12、145,120,101,80,65,()

A、48

B、49

C、50

D、51

【答案】:答案:A

解析:145=122+1,120=112-1,101=102+1,80=92-1,65=82+1,奇数项,每项等于首项为12,公差为-2的平方加1;偶数项,每项等于首项为11,公差为-2的平方减1,即所填数字为72-1=48。故选A。13、6,21,43,72,()

A、84

B、96

C、108

D、112

【答案】:答案:C

解析:依次将相邻两个数中后一个数减去前一个数得15,22,29,构成公差为7的等差数列,即所填数字为72+29+7=108。故选C。14、130,68,30,(),2

A、11

B、12

C、10

D、9

【答案】:答案:C

解析:130=53+5,68=43+4,30=33+3,10=23+2,2=13+1。故选C。15、22×32×42×52值为多少?()

A、1437536

B、1527536

C、1436536

D、1537536

【答案】:答案:D

解析:原式中42是3的倍数,则原式结果应能被3整除。选项中只有D能被3整除。故选D。16、甲、乙二人现在的年龄之和是一个完全平方数。7年前,他们各自的年龄都是完全平方数。再过多少年,他们的年龄之和又是完全平方数?()

A、20

B、18

C、16

D、9

【答案】:答案:B

解析:设七年前甲、乙的年龄分别为x、y岁,则七年后两人的年龄和为(x+7)+(y+7)=x+y+14,根据题意x、y、x+y+14均为完全平方数。100以内的平方数有1、4、9、16、25、36、49、64、81、100,其中1+49+14=64,1、49、64均为完全平方数,则七年前甲1岁,乙49岁,现在甲为8岁,乙为56岁,年龄和为64,甲乙年龄和为偶数,下一个平方数为偶数的是100,需要再过(100-64)÷2=18年。故选B。17、从A地到B地为上坡路。自行车选手从A地出发按A-B-A-B的路线行进,全程平均速度为从B地出发,按B-A-B-A的路线行进的全程平均速度的4/5,如自行车选手在上坡路与下坡路上分别以固定速度匀速骑行,问他上坡的速度是下坡速度的()。

A、1/2

B、1/3

C、2/3

D、3/5

【答案】:答案:A

解析:S=VT,当S一定的时候,VT成反比,两次行程的平均速度之比是4:5,故两次行程所用时间之比T1:T2=5:4。设一个下坡的时间是1,一个上坡的时间是n,则上坡速度是下坡速度的1/n。A-B-A-B的过程经历了2个上坡和1个下坡,则T1=2n+1;B-A-B-A的过程经历了2个下坡和1个上坡,则T2=2+n,而T1:T2=5:4=(2n+1):(2+n),解得n=2。故选A。18、12,23,35,47,511,()

A、613

B、612

C、611

D、610

【答案】:答案:A

解析:数位数列,各项首位数字“1,2,3,4,5,(6)”构成等差数列,其余数字“2,3,5,7,11,(13)”构成质数数列。因此,未知项为613。故选A。19、3,10,31,94,(),850

A、250

B、270

C、282

D、283

【答案】:答案:D

解析:10=3×3+1,31=10×3+1,94=31×3+1,每一项等于前一项乘以3加上1,即所填数字为94×3+1=283。故选D。20、某农场有36台收割机,要收割完所有的麦子需要14天时间。现收割了7天后增加4台收割机,并通过技术改造使每台机器的效率提升,问收割完所有的麦子还需要几天。

A.3

B.4

C.5

D.6

【答案】:答案:D

解析:方法一:赋值法,赋值每台收割机每天的工作效率为1,则工作总量为36×14,剩下的36×7由36+4=40台收割机完成,技术改造后每台收割机效率为,故剩下需要的时间为。方法二:比例法。由题意,原有收割机36台,增加4台后变为40台,提高效率5%后相当于原先40×(1+5%)=42台收割机的工作效率。效率比为6∶7,故所有时间比为7∶6,还需6天即可完成。故正确答案为D。21、小张购买了2个苹果、3根香蕉、4个面包和5块蛋糕,共消费58元。如果四种商品的单价都是正整数且各不相同,则每块蛋糕的价格最高可能为多少元?()

A、5

B、6

C、7

D、8

【答案】:答案:D

解析:设苹果、香蕉、面包、蛋糕的单价分别为x、y、z、w,根据共消费58元,得2x+3y+4z+5w=58。代入排除,根据最高,优先从值最大的选项代入。D选项,当w=8时,可得2x+3y+4z=18,由2x、4z、18均为偶数,则3y为偶数,即y为偶数且小于6。当y=2,有2x+4z=12,即x+2z=6,均为正整数且各不相同,若z=1,则x=4,此时满足题意。故选D。22、某年的10月里有5个星期六,4个星期日,则这年的10月1日是?()

A、星期一

B、星期二

C、星期三

D、星期四

【答案】:答案:D

解析:10月有31天,因为有5个星期六,4个星期日,所以10月31日是星期六。31=4×7+3,所以10月3日也是星期六,故10月1日是星期四。故选D。23、某快速反应部队运送救灾物资到灾区。飞机原计划每分钟飞行12千米,由于灾情危急,飞行速度提高到每分钟15千米,结果比原计划提前30分钟到达灾区,则机场到灾区的距离是多少千米?()

A、1600

B、1800

C、2050

D、2250

【答案】:答案:B

解析:设机场到灾区的距离为x,由每分钟飞行12千米可知,原飞行时间为;由每分钟15千米可知,现飞行时间为。根据比原计划提前30分钟,可得,解得x=1800(千米)。故选B。24、将17拆分成若干个自然数的和,这些自然数的乘积的最大值是多少?()

A、256

B、486

C、556

D、376

【答案】:答案:B

解析:若把一个整数拆分成若干个自然数之和,有大于4的数,则把大于4的这个数再分成一个2与另一个大于2的自然数之和,则这个2与大于2的这个数的乘积肯定比这个大于4的数更大。另外,如果拆分的数中含有1,则对乘积增大没有贡献,因此不能考虑。因此,要使加数之积最大,加数只能是2和3。但是,若加数中含有3个2,则不如将它换成2个3。因为2×2×2=8,而3×3=9。故拆分出的自然数中,至多含有两个2,而其余都是3。故将17拆分为17=3+3+3+3+3+2时,其乘积最大,最大值为243×2=486。故选B。25、1,3,2,6,11,19,()

A、24

B、36

C、29

D、38

【答案】:答案:B

解析:该数列为和数列,即前三项之和为第四项。故空缺处应为6+11+19=36。故选B。26、4,10,34,130,()

A、184

B、258

C、514

D、1026

【答案】:答案:C

解析:解法一:二级等差数列变式。解法二:从第三项开始,第三项等于第二项的5倍减去第一项的4倍,即34=5×10-4×4,130=5×34-4×10,(514)=5×130-4×34。故选C。27、一个人从家到公司,当他走到路程的一半的时候,速度下降了10%,问:他走完全程所用时间的前半段和后半段所走的路程比是()。

A、10:9

B、21:19

C、11:9

D、22:18

【答案】:答案:B

解析:设前半程速度为10,则后半程速度为9,路程总长为180,则前半程用时9,后半程用时10,总耗时19,一半为9.5。因此前半段时间走过的路程为90+9×(9.5-9)=94.5,后半段时间走过的路程为9×9.5=85.5。两段路程之比为94.5:85.5=21:19。故选B。28、某城市居民用水价格为:每户每月不超过5吨的部分按4元/吨收取;超过5吨不超过10吨的部分按6元/吨收取;超过10吨的部分按8元/吨收取。某户居民两个月共交水费108元,则该户居民这两个月用水总量最多为多少吨?()

A、17.25

B、21

C、21.33

D、24

【答案】:答案:B

解析:总费用一定,要使两个月的用水总量最多,需尽量使用低价水。先将两个月4元/吨的额度用完,花费4×5×2=40(元);再将6元/吨的额度用完,花费6×5×2=60(元)。由两个月共交水费108元可知,还剩108-40-60=8(元),可购买1吨单价为8元/吨的水。该户居民这两个月用水总量最多为5×2+5×2+1=21(吨)。故选B。29、某服装店有一批衬衣共76件,分别卖给了33位顾客,每位顾客最多买了3件。衬衣定价为100元,买1件按原价,买2件总价打九折,买3件总价打八折。最后卖完这批衬衣共收入6460元,则买了3件的顾客有()位。

A.4

B.8

C.14

D.15

【答案】:答案:C

解析:由题意可设买了1件、2件、3件衣服的人数分别为x、y、z人,则可得x+y+z=33,x+2y+3z=76,,联立求解可得x=4,y=15,z=14。故正确答案为C。30、5,10,20,(),80

A、30

B、40

C、50

D、60

【答案】:答案:B

解析:公比为2的等比数列。故选B。31、2.1,2.2,4.1,4.4,16.1,()

A、32.4

B、16.4

C、32.16

D、16.16

【答案】:答案:D

解析:偶数项的小数部分和整数部分相同。故选D。32、3,10,31,94,(),850

A、250

B、270

C、282

D、283

【答案】:答案:D

解析:10=3×3+1,31=10×3+1,94=31×3+1,每一项等于前一项乘以3加上1,即所填数字为94×3+1=283。故选D。33、-3,-2,5,24,61,()

A、122

B、156

C、240

D、348

【答案】:答案:A

解析:相邻两项逐差:因此,未知项=61+61=122。故选A。34、1,7,8,57,()

A、123

B、122

C、121

D、120

【答案】:答案:C

解析:12+7=8,72+8=57,82+57=121。故选C。35、某旅游部门规划一条从甲景点到乙景点的旅游线路,经测试,旅游船从甲到乙顺水匀速行驶需3小时;从乙返回甲逆水匀速行驶需4小时。假设水流速度恒定,甲乙之间的距离为y公里,旅游船在静水中匀速行驶y公里需要x小时,则x满足的方程为()。

A、1/3-1/x=1/x-1/4

B、1/3-1/x=1/4+1/x

C、1/(x+3)=1/4-1/x

D、1/(4-x)=1/x+1/3

【答案】:答案:A

解析:由题意可知,旅游船的静水速度为y/x公里/时,顺水速度为y/3公里/时,逆水速度为y/4公里/时。由水速=水速度-静水速度=静水速度-逆水速度,我们可得:y/3-y/x=y/x-y/4,消去y,得:1/3-1/x=1/x-1/4,故选A。考点点拨:解决流水问题的关键在于找出船速、水速、顺水速度和逆水速度四个量,然后根据其之间的关系求出未知量。故选A。36、甲和乙两个公司2014年的营业额相同。2015年乙公司受店铺改造工程影响,营业额比上年下降300万元。而甲公司则引入电商业务,营业额比上年增长600万元,正好是乙公司2015年营业额的3倍。则2014年两家公司的营业额之和为多少万元?()

A.900

B.1200

C.1500

D.1800

【答案】:答案:C

解析:设2014年两家公司营业额为x万元,由题意可得万元,则2014年两家公司营业额为故正确答案为C。37、3,30,129,348,()

A、532

B、621

C、656

D、735

【答案】:答案:D

解析:3=13+2、30=33+3、129=53+4、348=73+5,其中底数1、3、5、7构成连续的奇数列,另一部分2、3、4、5是连续的自然数,即所填数字为93+6=735。故选D。38、2,3,10,23,()

A、35

B、42

C、68

D、79

【答案】:答案:B

解析:相邻两项后一项减前一项,3-2=1,10-3=7,13-10=13,42-23=19,是一个公差为6的等差数列,即所填数字为23+19=42。故选B。解析:设每个小长方形的长为x厘米、宽为y厘米,由题意可知,2x+(x+y)=88÷2,2x=3y,得x=12,y=8。即大长方形的面积为12×8×5=480平方厘米。故选C。39、-1,3,-3,-3,-9,()

A、-9

B、-4

C、-14

D、-45

【答案】:答案:D

解析:题干倍数关系明显,考虑作商。后项除以前项得到新数列:-3、-1、1、3,新数列为公差是2的等差数列,则新数列的下一项应为5,所求项为:-9×5=-45。故选D。40、甲、乙和丙三种不同浓度、不同规格的酒精溶液,每瓶重量分别为3公斤、7公斤和9公斤,如果将甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分别混合,得到的酒精浓度分别为50%,50%和60%。如果将三种酒精合各一瓶混合,得到的酒精中要加入多少公斤纯净水后,其浓度正好是50%?()

A、1

B、1.3

C、1.6

D、1.9

【答案】:答案:C

解析:甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分别混合,相当于两瓶甲、两瓶乙、两瓶丙混合,前两种浓度都是50%,所以只需要加入适量水使得乙丙混合浓度由60%变为50%即可。设加水x,可将浓度为60%的酒精溶液溶度变为50%,即,解得x=3.2(公斤)。此时甲乙,甲丙和乙丙溶液各一瓶混合后浓度必然为50%。若甲、乙和丙各一瓶混合时浓度仍然为50%,则需加水为(公斤)。故选C。41、某校二年级全部共3个班的学生排队.每排4人,5人或6人,最后一排都只有2人.这个学校二年级有()名学生。

A、120

B、122

C、121

D、123

【答案】:答案:B

解析:由题意知,学生数除以4、5、6均余2,由代入法可以得到,只有B项满足条件。42、学校举行象棋比赛,共有甲、乙、丙、丁4支队。规定每支队都要和另外3支队各比赛一场,胜得3分,败得0分,平双方各得1分。已知:(1)这4支队三场比赛的总得分为4个连续的奇数;(2)乙队总得分排在第一;(3)丁队恰有两场同对方打成平局,其中有一场是与丙队打成平局的。问丙队得几分?()

A、1分

B、3分

C、5分

D、7分

【答案】:答案:A

解析:每支队均比赛3场,因此最高分不超过9分,又知总得分为4个连续的奇数,因此得分有3、5、7、9和1、3、5、7两种情况。若最高分为9分,那么排名第二的队最多赢现场得6分,不可能得7分,不符合题意,故乙队得7分,即2胜1平。由条件(3)知,丁队恰有两场同对方打成平局,积分2分,为偶数,故另一场只能为胜,共得5分。由此可知,丙队得分为1或3分。由于丁队一场未败,故乙队获胜的两场只能是甲队和丙队。目前已知丙队战两场,一负一平,积1分,另一场无论是胜或平,积分均为偶数,故这一场只能为负,总积分为1分。故选A。43、44,52,59,73,83,94,()

A、107

B、101

C、105

D、113

【答案】:答案:A

解析:每相邻的两项作差,得到8,7,14,10,11,每一个差是原数列中前一项个位数与十位数字的和,即8=4+4,7=5+2,14=5+9,10=7+3,11=8+3,所以9+4=13,所以未知项为13+94=107。故选A。44、甲、乙、丙、丁四人开展羽毛球比赛,首轮每人需和另外3人各比1场,获胜2场及以上者进入下一轮,否则淘汰。甲胜乙、丙、丁的概率分别为70%、50%、40%,问甲首轮遭淘汰的概率是多少?()

A、42.5%

B、45%

C、47.5%

D、48%

【答案】:答案:B

解析:获胜2场及以上者进入下一轮,甲首轮遭淘汰,则甲输了2场或者3场。分别枚举如下:(1)甲输三场的概率为30%×50%×60%=9%;(2)甲输两场有三种可能:①赢乙输丙丁,概率为70%×50%×60%=21%;②赢丙输乙丁,概率为30%×50%×60%=9%;③赢丁输乙丙,概率为30%×50%×40%=6%。甲首轮遭淘汰的概率为9%+21%+9%+6%=45%。故选B。45、2,3,10,15,26,35,()

A、40

B、45

C、50

D、55

【答案】:答案:C

解析:2=1平方+1,3=2平方-1,10=3平方+1,15=4平方-1,26=5平方+1,35=6平方-1,问号=7平方+1,问号=50。故选C。46、设袋中装有标着数字为1,2,…,8等8个签,并规定标有数字1,4,7的为中奖号。甲、乙、丙、丁

4人依次从袋中随机抽取一个签、已知丙中奖了、则乙不中奖的概率为多少?()

A、5/8

B、3/7

C、3/8

D、5/7

【答案】:答案:D

解析:已知丙中奖,则剩余7个签,还有2个是中奖号,可得乙不中奖概率为。故选D。47、某商店以5元/斤的价格购入一批蔬菜,上午以8元/斤的价格卖出总进货量的60%,中午以上午售出价的8折卖出总进货量的20%,下午以中午售出价的一半卖出剩余货量的一半,最后获利210元。则该商店一共购入多少斤蔬菜?()

A、140

B、150

C、160

D、180

【答案】:答案:B

解析:赋值购进的量为10斤,上午以8元/斤的价格卖出6斤,中午以6.4元/斤的价格卖出2斤,下午以3.2元/斤的价格卖出1斤,总收入=8×6+6.4×2+3.2×1=64元,总利润=64-5×10=14元,实际购入(210/14)×10=150斤。故选B。48、-7,0,1,2,9,()

A、42

B、18

C、24

D、28

【答案】:答案:D

解析:-7=(-2)3+1;0=(-1)3+1;1=03+1;2=13+1;9=23+1;28=33+1。故选D。49、为了国防需要,A基地要运载1480吨的战备物资到1100千米外的B基地。现在A基地只有一架“运9”大型运输机和一列“货运列车”,“运9”速度550千米每小时,载重能力为20吨,“货运列车”速度100千米每小时,运输能力为600吨,那么这批战备物资到达B基地的最短时间为:

A.53小时

B.54小时

C.55小时

D.56小时

【答案】:答案:B

解析:由题意可知,运输机运输一次往返需要2×(1100÷550)=4小时,单位时间运输5吨;列车运输一次往返需要2×(1100÷100)=22小时,单位时间运输20+吨。要求运输时间最短,那么必然要让单位时间运输量大的列车尽可能多地运输。货运列车运输能力为600吨,运输总量为1480吨,因此可推知货运列车共运输两次,即吨。还剩1480-1200=280吨,需要运输机运输280÷20=14次。且第14次不用计算返回所用的时间,则最短时间为小时。故正确答案为B。50、在某企业,40%的员工有至少3年的工龄,16个员工有至少8年的工龄。如果90%的员工的工龄不足8年,则工龄至少3年但不足8年的员工有()人。

A、48

B、64

C、80

D、144

【答案】:答案:A

解析:由于不足8年工龄的员工占90%,则至少8年工龄的员工占1-90%=10%,可得员工总数为16÷10%=160(人),故工龄至少3年但不足8年的员工有160×40%-16=48(人)。故选A。51、调研人员在一次市场调查活动中收回了435份调查问卷,其中80%的调查问卷上填写了被调查者的手机号码。那么调研人员至少需要从这些调查表中随机抽出多少份,才能保证一定能找到两个手机号码后两位相同的被调查者?()

A、101

B、175

C、188

D、200

【答案】:答案:C

解析:在435份调查问卷中有435×20%=87份没有写手机号;且手机号码后两位可能出现的情况一共10×10=100种,因此要保证一定能找到两个手机号码后两位相同的被调查者,至少需要抽取87+100+1=188份。故选C。52、某班一次数学测试,全班平均91分,其中男生平均88分,女生平均93分,则女生人数是男生人数的多少倍?()

A、0.5

B、1

C、1.5

D、2

【答案】:答案:C

解析:设男生、女生人数分别为x、y,可得88x+93y=91(x+y),解得,即女生是男生的1.5倍。故选C。53、一个四边形广场,它的四边长分别是60米、72米、96米、84米,现在四边上植树,四角需种树,而且每两棵树的间隔相等,那么,至少要种多少棵树?()

A、22

B、25

C、26

D、30

【答案】:答案:C

解析:根据四角需种树,且每两棵树的间隔相等可知,间隔距离应为四边边长的公约数;要使棵树至少,则间隔距离要尽量最大,公约数最大为12(60、72、96、84的最大公约数)。故棵数=段数=长度÷间距=(60+72+84+96)÷12=26(棵)。故选C。54、有苹果若干个,若把其换成桔子,则多换5个;若把其换成菠萝,则少掉7个,已知每个桔子4角9分钱,每个菠萝7角钱,每个苹果的单价是多少?()

A、5角

B、5角8分

C、5角6分

D、5角4分

【答案】:答案:C

解析:此题可理解为:把苹果全部卖掉,得到钱若干,若用这些钱买成同样数量的桔子,则剩下49×5=245分,若用这些钱买成同样数量的菠萝,则缺少70×7=490分,所以苹果个数=(245+490)÷(70-49)=35个,苹果总价=49×35+49×5=1960分,每个苹果单价=1960÷35=56分=5角6分。故选C。55、0,4,18,(),100

A、48

B、58

C、50

D、38

【答案】:答案:A

解析:思路一:0、4、18、48、100=>作差=>4、14、30、52=>作差=>10、16、22等差数列。思路二:13-12=0;23-22=4;33-32=18;43-42=48;53-52=100。思路三:0×1=0;1×4=4;2×9=18;3×16=48;4×25=100。思路四:1×0=0;2×2=4;3×6=18;4×12=48;5×20=100可以发现:0,2,6,(12),20依次相差2,4,(6),8。思路五:0=12×0;4=22×1;18=32×2;()=X2×Y;100=52×4所以()=42×3。56、8,10,14,18,()

A、24

B、32

C、26

D、20

【答案】:答案:C

解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故选C。57、2,12,40,112,()

A、224

B、232

C、288

D、296

【答案】:答案:C

解析:原数列可以写成1×2,3×4,5×8,7×16,前一个乘数数列为1,3,5,7,是等差数列,下一项是9,后一个乘数数列为2,4,8,16,是等比数列,下一项是32,所以原数列空缺项为9×32=288。故选C。58、102,314,526,()

A、624

B、738

C、809

D、849

【答案】:答案:B

解析:314-102=212,526-314=212。后一项-前一项=212,即所填数字为536+212=738。故选B。59、某小区有40%的住户订阅日报,有15%的住户同时订阅日报和时报,至少有75%的住户至少订阅两种报纸中的一种,问订阅时报的比例至少为多少?()

A、35%

B、50%

C、55%

D、60%

【答案】:答案:B

解析:设订阅时报的住户为x,至少订阅一种报纸的人数为40%+x-15%。由至少75%的住户至少订阅两种报纸中的一种得,40%+x-15%≥75%,解得x≥50%。故选B。60、某校二年级全部共3个班的学生排队.每排4人,5人或6人,最后一排都只有2人.这个学校二年级有()名学生。

A、120

B、122

C、121

D、123

【答案】:答案:B

解析:由题意知,学生数除以4、5、6均余2,由代入法可以得到,只有B项满足条件。61、44,52,59,73,83,94,()

A、107

B、101

C、105

D、113

【答案】:答案:A

解析:每相邻的两项作差,得到8,7,14,10,11,每一个差是原数列中前一项个位数与十位数字的和,即8=4+4,7=5+2,14=5+9,10=7+3,11=8+3,所以9+4=13,所以未知项为13+94=107。故选A。62、80×35×15的值是()。

A、42000

B、36000

C、33000

D、48000

【答案】:答案:A

解析:如果直接进行计算,不免有些麻烦,但我们可以很容易发现45和15都有5这个因子,这其中又有80,所以我们可以对采用凑整法来进行处理。原式=80×9×5×5×3=80×25×27=2000×27=54000。本题运用了整除法。题干中有35,所以结果应有7这个因子,其应为7所整除,观察选项。故选A。63、1,2,3,6,12,24,()

A、48

B、45

C、36

D、32

【答案】:答案:A

解析:1+2=3,1+2+3=6,1+2+3+6=12,1+2+3+6+12=24,第N项=第N-1项+…+第一项,即所填数字为1+2+3+6+12+24=48。故选A。64、将17拆分成若干个自然数的和,这些自然数的乘积的最大值是多少?()

A、256

B、486

C、556

D、376

【答案】:答案:B

解析:若把一个整数拆分成若干个自然数之和,有大于4的数,则把大于4的这个数再分成一个2与另一个大于2的自然数之和,则这个2与大于2的这个数的乘积肯定比这个大于4的数更大。另外,如果拆分的数中含有1,则对乘积增大没有贡献,因此不能考虑。因此,要使加数之积最大,加数只能是2和3。但是,若加数中含有3个2,则不如将它换成2个3。因为2×2×2=8,而3×3=9。故拆分出的自然数中,至多含有两个2,而其余都是3。故将17拆分为17=3+3+3+3+3+2时,其乘积最大,最大值为243×2=486。故选B。65、接受采访的100个大学生中,88人有手机,76人有电脑,其中有手机没电脑的共15人,则这100个学生中有电脑但没手机的共有多少人?()

A、25

B、15

C、5

D、3

【答案】:答案:D

解析:根据有手机没电脑共15人,可得既有手机又有电脑(①部分)的人数为88-15=73人,则有电脑但没手机(②部分)的人数为76-73=3人。故选D。66、甲、乙、丙三辆汽车分别从A地开往千里之外的B地。若乙比甲晚出发30分钟,则乙出发后2小时追上甲;若丙比乙晚出发20分钟,则丙出发后5小时追上乙。若甲出发10分钟后乙出发,当乙追上甲时,丙才出发,则丙追上甲所需时间是()。

A、110分钟

B、150分钟

C、127分钟

D、128分钟

【答案】:答案:B

解析:设甲、乙、丙三辆汽车的速度分别为x、y、z。由于甲行驶30分钟的路程,乙需要2小时才能追上,则30x=(y-x)×2×60,化简得x∶y=4∶5。又因乙行驶20分钟的路程,丙需要5小时才能追上,则20y=(z-y)×5×60,化简得y∶z=15∶16。所以三辆汽车的速度x∶y∶z=12∶15∶16。赋值甲、乙、丙的速度分别为12、15、16,甲出发10分钟后乙出发,则乙追上甲的时间为(分钟),故丙出发时甲已经行驶10+40=50(分钟),设丙追上甲所需时间是t分钟,可得方程12×50=(16-12)×t,解得t=150。故选B。67、小张购买了2个苹果、3根香蕉、4个面包和5块蛋糕,共消费58元。如果四种商品的单价都是正整数且各不相同,则每块蛋糕的价格最高可能为多少元?()

A、5

B、6

C、7

D、8

【答案】:答案:D

解析:设苹果、香蕉、面包、蛋糕的单价分别为x、y、z、w,根据共消费58元,得2x+3y+4z+5w=58。代入排除,根据最高,优先从值最大的选项代入。D选项,当w=8时,可得2x+3y+4z=18,由2x、4z、18均为偶数,则3y为偶数,即y为偶数且小于6。当y=2,有2x+4z=12,即x+2z=6,均为正整数且各不相同,若z=1,则x=4,此时满足题意。故选D。68、现有5盒动画卡片,各盒卡片张数分别为:7、9、11、14、17。卡片按图案分为米老鼠、葫芦娃、喜羊羊和灰太狼4种,每个盒内装的是同图案的卡片。已知米老鼠的卡片只有一盒,而喜羊羊、灰太狼图案的卡片数之和比葫芦娃图案的多1倍。据此可知,图案为米老鼠的卡片张数为()。

A、7

B、9

C、14

D、17

【答案】:答案:A

解析:(喜洋洋+灰太狼):葫芦娃=2:1,喜洋洋+灰太狼+葫芦娃是3的倍数;总张数=7+9+11+14+17=58张,58除以3余1,可得米老鼠的卡片只能是7张。故选A。69、一人骑车上班需要50分钟,途中骑了一段时间后自行车坏了,只好推车去上班,结果晚到10分钟,如果骑车的速度比步行的速度快一倍,则步行了多少分钟?()

A、20

B、34

C、40

D、50

【答案】:答案:A

解析:设骑车速度为2,步行速度为1,设步行时间为t分钟,由题意可知,50×2=2(50+10-t)+1t,得t=20,即步行了20分钟。故选A。70、2,4,12,32,88,()

A、140

B、180

C、220

D、240

【答案】:答案:D

解析:12=2×(2+4),32=2×(4+12),88=2×(32+12),第三项=2×(第一项+第二项),即所填数字为2×(88+32)=240。故选D。71、甲乙两船从相距50千米的地方起航,船速不变。两船在逆水中航行,甲航行100千米恰好赶上乙;如果两船在顺水中航行,那么甲追上乙需航行多远?()

A、500千米

B、100~500千米

C、100千米

D、大于100千米

【答案】:答案:D

解析:不管是顺水还是逆水,水速对两船的影响是一样的,影响追及时间产生的仅为两船船速之差。因此无论逆水还是顺水,追及时间相同,逆水时甲船追上乙船需航行100千米,而顺水航行时速度大于逆水时的速度,航行距离应大于100千米。故选D。72、当含盐30%的60千克盐水蒸发为含盐40%的盐水时,盐水重量为多少千克?()

A、45

B、50

C、55

D、60

【答案】:答案:A

解析:设蒸发后盐水质量为x千克,由盐水中盐的质量不变可得,60×30%=40%x,解得x=45。故选A。73、在某城市中,有60%的家庭订阅某种日报,有85%的家庭有电视机。假定这两个事件是独立的,今随机抽出一个家庭,所抽家庭既订阅该种日报又有电视机的概率是()。

A、0.09

B、0.25

C、0.36

D、0.51

【答案】:答案:D

解析:由于是独立重复试验,故既订阅该中日报又有电视机的概率是60%×85%=51%。故选D。74、145,120,101,80,65,()

A、48

B、49

C、50

D、51

【答案】:答案:A

解析:145=122+1,120=112-1,101=102+1,80=92-1,65=82+1,奇数项,每项等于首项为12,公差为-2的平方加1;偶数项,每项等于首项为11,公差为-2的平方减1,即所填数字为72-1=48。故选A。75、一旅行团共有50位游客到某地旅游,去A景点的游客有35位,去B景点的游客有32位,去C景点的游客有27位,去A、B景点的游客有20位,去B、C景点的游客有15位,三个景点都去的游客有8位,有2位游客去完一个景点后先行离团,还有1位游客三个景点都没去。那么,50位游客中有多少位恰好去了两个景点?()

A、29

B、31

C、35

D、37

【答案】:答案:A

解析:设去两个景点的人数为y,根据三集合非标准型公式可得:35+32+27-y-2×8=50-1,解得y=29。故选A。76、某商店以5元/斤的价格购入一批蔬菜,上午以8元/斤的价格卖出总进货量的60%,中午以上午售出价的8折卖出总进货量的20%,下午以中午售出价的一半卖出剩余货量的一半,最后获利210元。则该商店一共购入多少斤蔬菜?()

A、140

B、150

C、160

D、180

【答案】:答案:B

解析:赋值购进的量为10斤,上午以8元/斤的价格卖出6斤,中午以6.4元/斤的价格卖出2斤,下午以3.2元/斤的价格卖出1斤,总收入=8×6+6.4×2+3.2×1=64元,总利润=64-5×10=14元,实际购入(210/14)×10=150斤。故选B。77、8,4,8,10,14,()

A、22

B、20

C、19

D、24

【答案】:答案:C

解析:题干数列为递推数列,规律为:8÷2+4=8,4÷2+8=10,8÷2+10=14,即第一项÷2+第二项=第三项,因此未知项为10÷2+14=19。故选C。78、30个小朋友围成一圈玩传球游戏,每次球传给下一个小朋友需要1秒。当老师喊“转向”时,要改变传球方向。如果从小华开始传球,老师在游戏开始后的第16、31、49秒喊“转向”,那么在第多少秒时,球会重新回到小华手上?()

A、68

B、69

C、70

D、71

【答案】:答案:A

解析:设小华的位置为0号,按顺时针方向编号依次为0号、1号、2号、……、29号。小华以顺时针方向开始传球。①经过16秒,顺时针传到16号;②转向:经过15秒(31-16=15),逆时针传到1号;③转向:经过18秒(49-31=18),顺时针传到19号;④转向:经过19秒,逆时针传回到小华手中。在第49+19=68(秒)时,球会重新回到小华手上。故选A。79、1,2,3,6,12,()

A、16

B、20

C、24

D、36

【答案】:答案:C

解析:分3组=>(1,2),(3,6),(12,24)=>每组后项除以前项=>2、2、2。故选C。80、7.1,8.6,14.2,16.12,28.4,()

A、32.24

B、30.4

C、32.4

D、30.24

【答案】:答案:A

解析:奇数项和偶数项间隔来看,整数部分和小数部分分别构成公比为2的等比数列。故选A。81、1,2,9,64,()

A、250

B、425

C、625

D、650

【答案】:答案:C

解析:10,21,32,43,(54)=625。故选C。82、2,17,29,38,44,()

A、45

B、46

C、47

D、48

【答案】:答案:C

解析:做差。第一次做差结果为15,12,9,6,所以后面一项为3,后面一项为47。故选C。83、从A地到B地为上坡路。自行车选手从A地出发按A-B-A-B的路线行进,全程平均速度为从B地出发,按B-A-B-A的路线行进的全程平均速度的4/5,如自行车选手在上坡路与下坡路上分别以固定速度匀速骑行,问他上坡的速度是下坡速度的()。

A、1/2

B、1/3

C、2/3

D、3/5

【答案】:答案:A

解析:S=VT,当S一定的时候,VT成反比,两次行程的平均速度之比是4:5,故两次行程所用时间之比T1:T2=5:4。设一个下坡的时间是1,一个上坡的时间是n,则上坡速度是下坡速度的1/n。A-B-A-B的过程经历了2个上坡和1个下坡,则T1=2n+1;B-A-B-A的过程经历了2个下坡和1个上坡,则T2=2+n,而T1:T2=5:4=(2n+1):(2+n),解得n=2。故选A。84、-1,6,25,62,()

A、123

B、87

C、150

D、109

【答案】:答案:A

解析:-1=1-2=13-2,6=8-2=23-2,25=27-2=33-2,62=64-2=43-2,53-2=125-2=123。故选A。85、A、B、C三个试管中各盛有10克、20克、30克水,把某种浓度的盐水10克倒入A中,充分混合后从A中取出10克倒入B中,再充分混合后从B中取出10克倒入C中,最后得到C中盐水的浓度为0.5%。则开始倒入试管A中的盐水浓度是多少?()

A、12%

B、15%

C、18%

D、20%

【答案】:答案:A

解析:C中含盐量为(30+10)×0.5%=0.2克,即从B中取出的10克中含盐0.2克,则B的浓度为0.2÷10=2%,进而求出B中含盐量为(20+10)×2%=0.6克,即从A中取出的10克中含盐0.6克,可得A的浓度为0.6÷10=6%,进一步得出A中含盐量为(10+10)×6%=1.2克,故开始倒入A中的盐水浓度为1.2÷10=12%。故选A。86、甲、乙两人在一条400米的环形跑道上从相距200米的位置出发,同向匀速跑步。当甲第三次追上乙的时候,乙跑了2000米。问甲的速度是乙的多少倍?()

A、1.2

B、1.5

C、1.6

D、2.0

【答案】:答案:B

解析:环形同点同向出发每追上一次,甲比乙多跑一圈。第一次由于是不同起点,甲比乙多跑原来的差距200米;之后两次追上都多跑400米,甲一共比乙多跑200+400×2=1000(米)。乙跑了2000米,甲跑了3000米,时间相同,则速度比与路程比也相同,可知甲的速度是乙的3000÷2000=1.5倍。故选B。87、12,23,35,47,511,()

A、613

B、612

C、611

D、610

【答案】:答案:A

解析:数位数列,各项首位数字“1,2,3,4,5,(6)”构成

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论