版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
StateofAIfor
Decarbonisation2025
January2026
1
2
Contents
3Introduction
10UnlockingDomesticDecarbonisation
18EnablingNetZeroInfrastructure
27MaximisingFlexibilityinEnergyNetworks
36DecarbonisingManufacturingInputs
44ImprovingManufacturingProcessEfficiency
53OptimisingSoilManagement
62MinimisingMethaneinAgriculture
70OptimisingEVInfrastructureandCharging
78DecarbonisingFreightandFleets
3
2025:lotsofhype,sometangibleprogress
Thehype
AIhasbeenconstantlyintheheadlinesthisyear.Jaw-
droppinglylargeinvestmentsinAIdatacentres
underpinnedUSeconomicgrowth.Securingenough
energyforthosedatacentresbecameamajorconcern
andtechcompaniesstartedfundingnuclearpowerplantsandgridreinforcement.Businessesaroundtheworld
startedintegratinggenerativeAIintotheirsoftwareandprocesses,withmixedresults.Debatesaboutthefutureofworkintensified,withpeopleeitherworriedorexcitedaboutAI’spotentialtoautomatejobs.Evennational
carbonbudgetsstartedincludingassumptionsthatAIcouldsavemillionsoftonnesofCO2emissions.
Butamidstthattorrentofnewsandhypeitcanbehardtofindtheanswertoanimportantquestion:howeffectivelyisAIbeingappliedtokeysocietalchallengeslike
decarbonisation?
Thereality
ThisannualreportanswersthatquestionwithareviewofhowUKapplicationsofAIfordecarbonisationhavematuredoverthelastyear.Thisrangesfrom
applicationsthatarereachingscaleandmeaningfullycontributingtonationaldecarbonisation,throughto
earlierstageresearchthathasmadenotableprogress.
Therehavebeentangiblestepsforwardinsomeareas
thisyear.AI-poweredEVchargingisalreadyplayingasignificantroleinmanagingourlowcarbonelectricitygrid.HeatpumpinstallationsarequickerandcheaperbecauseofAI.SteelfurnacesandcementplantsarereducingemissionsthroughAI-optimisedoperations.
ButinotherareasprogresshasbeensloworhinderedbygenerativeAIhype.Lotsmoreworkisrequiredto
fullyrealisethebenefitsofAIfordecarbonisation.
4
MeasuringprogressonthenineGrandChallenges
Inour
originalreport
ADViCEidentified
sevendecarbonisationGrandChallengeswhereAIcouldmosthaveimpact.
Thisyearwehavealsoaddedtwotransport-relatedGrandChallenges.
EachGrandChallengeisbrokendownintomorespecificchallengesforAItotackleinthe
DecarbonisationChallengeCards
.
ToidentifyprogressthisyeartheADViCE
teamofdomainexpertsreviewedpotentialexamplesofprogressineachspecific
challenge(sourcedusingAI-basedresearchtoolsandconversationswithstakeholders).ForeachGrandChallengetheexpertsthenidentifiedkeythemesandexamplesof
whereAIhasmadeprogressin2025.
5
Overallprogressin2025
In2025AIhadameasurableimpactontheUK’sabilitytooperatealowcarbonelectricitygrid.AI-poweredsolarnowcastingreducedemissionsbyanestimated300,000tonnes,smartEVchargingloweredpeakelectricityusagefromEVsby42%andvirtualpowerplantshelpedbalancethegrid.
ThisyearsawanotablestepforwardinAIapplicationstodomesticdecarbonisationwiththenationalrolloutoftwoAItoolslookingtostreamlinedifferentpartsoftheheatpumpinstallationjourney.
Inmanufacturingandtransport,adoptionofAIforprocessefficiencyandoptimisationcontinuedtogrow.Largerorganisationsstartedtomovefromdemonstrationtodeployment,thoughsmaller
organisationstypicallylaggedbehind.
AIforsoilmanagementprogressedfromtheoreticalpilotingtoearlycommercialisation,whileapplicationstoagriculturalmethanereductionmadesomeprogressattheresearchstage.
LessprogresswasmadeonapplyingAItodecarbonisingmanufacturinginputsorelectrifyingfreight,partlyduetothehighcapitalcostsinvolved.ThesemayneedadditionalinterventionstoaccelerateAIadoption.
Visualsummaryofprogress
ShownbelowisanassessmentofhowfarsolutionsforeachGrandChallengeprogressedbetween2024and2025,alongwitharoughestimateofpotentialprogressin2026basedontheenablersandblockersidentifiedinthisreport.
NosignificantEarlyexploratoryMajorresearchProofofconceptPilotsinsomeMeaningfulimpactforGrowingimpactNational-scaleMaximumdecarbonisation
decarbonisationimpactimpact
workresearchprogrammesdemonstratorsorganisationsindividualorgsacrosssector
I
Unlockingdomesticdecarbonisation
20242025⃞2026
EnablingNetZeroinfrastructure2024一20252026
20242025
2026
-----⃞
Decarbonisingmanufacturinginputs
Improvingmanufacturingprocessefficiency
Optimisingsoilmanagement
Minimisingmethaneinagriculture
OptimisingEVinfrastructureandcharging
Decarbonisingfreightandfleets
2026
2025
2024
2026
2024
2025
------------⃞
2026
2024—一2025
--------------⃞
2026*
20242025
2026
2024
2025
Maximisingflexibilityinenergynetworks202420252026*
2024
Key
Maturityattheendof2024
Maturityattheendof2025
Potential
maturityattheendof2026
(estimate)
2025
2026
6
*Note:shorterarrowsfor2026in‘National-scaledecarbonisationimpact’arenotanindicatorprogressisexpectedtoslow,butbecausethefigureisfocusedonthegrandchallengesinearlierstages.AI’sdecarbonisationimpactforthemorematurechallengesisexpectedtogrowsteadilyin2026andfuturereportsmaystarttotrackthatmoreclearly.
7
Somekeynumbersfrom2025
79%
ofEVowners
haveasmart
charger
300,000
tonnesofCO2
avoidedeach
yearusingsolar
nowcasting
1500
farmsusing
autonomous
droneflightsto
inspectcrops
2%
reductioninCO2
fromcement
productionusing
AI
50%
reductioninheat
pump
installationtime
usingAItools
Thestartupecosystemcontinuestogrow
TheUKAIfordecarbonisationecosystemhasshownsteadygrowthinrecentyears.Mostcompaniesareintheseedandventurestage,whichbroadlymirrorstheoverallAIecosystemintheUK.
ActiveCompanies
379*
366
7%
343
307
12%
268
Seed
236
45%
Venture
Growth
Established
36%
20202021202220232024Q3*2025
8*DatasourcedfromBeauhurstcompanydatabaseonaselectionof380companiesidentifiedthroughacustomquery.DatacollectedupuntilQ3of2025.Categoriesofevolutionstagesofcompaniescanbefound
here
Isthisreportmissingsomething?
Youcancontactusat
ADViCE@turing.ac.uk
,or
signupto
ourmailinglist
tobenotifiedofthewebinars,workshopsandinperson
eventsthatwehost.MoredetailsaboutthelaunchofthedatabaseofAIfor
decarbonisationsolutionswillbeannouncedshortly.Wealsohavea
knowledge
base
withkeyresources.
AboutADViCE
AIforDecarbonisation’s
VirtualCentreofExcellence(ADViCE)isaprogrammefundedbytheDepartmentforEnergySecurityandNetZero.Itisapartnership
betweenDigitalCatapult,EnergySystemsCatapultandTheAlanTuring
Institute.
ADViCE
existstojoinuptheAIfor
decarbonisationecosystem.We’realwayskeentohearaboutwhatyou’redoinginthisspace.
Thisisanannualreportandforfuture
editionswewillbeworkingwiththe
ecosystemtocurateacontinuallyupdateddatabaseofAIfordecarbonisation
solutionsandtheirprogress.
We’dlovetohearfromyouwhetheryou:
•haveadecarbonisationchallengeyouthinkismissing
•areworkingonanAIsolutionthatisdeliveringdecarbonisation
•orjustknowaboutsomethinginterestingwehaven’tcovered.
9
Grand
Challenge1
Unlocking
Domestic
Decarbonisation
10
11
Overview:UnlockingDomesticDecarbonisation
TherearesomewellstudiedAIapplication
areaswhichhavebothacademicresearchandahandfulofearly-stagecommercialofferings,butfewexamplesofsuccessatscaleyet.
BothdataavailabilityandthepotentialmarketforAIaregrowingasdomesticdecarbonisationpicksupspeed.
Residentialheatingisresponsibleformorethan13%ofgreenhousegasemissionseachyear,
andsoisessentialindecarbonisingtheUK
economy.However,decarbonisinghomes
requireschangestobothheatingsystemsandconsumerbehavioursineveryhomeintheUK.Engagingconsumersinthatprocess,financingit,anddeliveringitatpaceareallmajor
challenges.
Therehavebeenanumberoflargepublic
sectorinnovationfundingprogrammesinthisareaoverthelastfewyears,includingtheNetZeroHeatprogramme.
ThisyearsawanotablestepforwardinAI
applicationstothisareawiththenationalrolloutoftwoAItoolslookingtostreamlinedifferent
partsoftheheatpumpinstallationjourney.
12
AIapplicationsthatcouldaddressthischallenge
13
ThemesinAIadoptionfordomesticdecarbonisation
1
2
3
4
5
UseofAIinacceleratingheatingsystemdesignhasmovedfrompilots(e.g.
Geo
’sAISmartHeatPathwayin
2022-24)tonational-scaleproductlaunches(
HeatGeek’sZeroDisruptAI
)thatarehelpingtosignificantlyreduceheatpumpinstallationcosts.
Frictionintheadminprocessforlowcarbontechnology(LCT)installshasbeenreducednationwide,withtheabilitytoprovidesame-dayauto-approvalsforLCTinstallsusing
ENA’sConnectDirect
.
Specialistchatbotsaimedatsupporting
installers
and
consumers
withheatpumpinstallationshavebeendevelopedandtrialled–includingapublic-facingrollout–buthavenotyetseensignificanttraction.
AdoptionofAItoimproveidentificationofvulnerableenergyconsumersisnowwidespread,from
callanalysisby
ScottishPower
,to
fuelpovertyriskmapping
tobettertargetgrantsupport,toSSEN
forecastingfuturevulnerability
atalocallevel.
AItoautomaticallybreaksmartmeterusageintodifferentappliances(knownasnon-intrusiveloadmonitoring,NILM)remainsanactiveareaofacademicresearch.Itisalreadyemployedinanumberofconsumer-facingappsincluding
Loop
,whichhashelped>150kusersreduceenergyusagebyanaverageof15%.
Heatpumpdesign:HeatGeekZeroDisrupt
HeatGeek
haveusedAIextensivelyinautomatingpartsoftheheatingsystemdesignprocess.Thisincludes:
•LiDAR-basedautomatedinternalsurveyingofhomes
•Computervision-basedheatpumpsitingassessment
•Automationofformpopulationandcommunications
•AI-basedselectionofoptimaldesignparameterstoachievetargetefficiencyatminimumcost
Intrialsthishas
reducedcosttocustomers
*by~75%andinstallationtimeby~50%,andhasnowbeenrolledout
nationallyandisinusebyallHeatGeekinstallers.
Thisdirectlyaddressesthecostanddisruptionchallengesthatareslowingheatpumpadoptionandislikelyto
significantlyacceleratetherateofheatpumpinstallations.
14*afterboiler
upgradeschemegrantsof£7.5karetakenintoaccount
15
Connectionapproval:ENAConnectDirect
The
EnergyNetworkAssociation
haveintegratedAIintothenationalconnectionapplicationservicefordomesticlow
carbontechnologies(LCTs)likeheatpumpsandEVchargers.
Itutilisescomputervisionto
reviewphotosofcut
-
outs
(essentiallythefusebetweenahomeandthegrid)to
removetheneedforahumantorevieweveryphotoandenableinstantapprovalofapplicationswhereitwasclearnocut-outupgradewasrequired.
Ithasreducedthetimeandcostofcompletingpaperworkforinstallersandhasbeenusedtospeedupover
185kLCT
approvals
forconsumers.
16
Enablersforthenext12months
Heatpumpinstallationsincreasing
HeatpumpinstallationratesareincreasingandtheUKnowhasover
300,000heatpumps
installed.
ThismeansthereisbothmoredataavailablefortrainingAI(including
freedatafromtrials
)andalargermarkettodriverevenuesforAIinnovators.
Smartmeterdatastartstobecomemoreavailable
Severalongoinginitiatives
tomakeaccesstosmartmeterdataeasierareunlikelytohaveanimpactin2026,but
syntheticsmartmeterdata
isavailablenow.
GenerativeAItoolingmatures
AsgenerativeAImodels(andassociatedtooling)mature,itbecomesincreasinglyfeasibleforthemtobeusedatscaletosupportconsumersindecarbonisingtheirhomes.
17
Remaininggapsandbarriers
Electricityremainsmoreexpensivethangas
Despiterecentgovernmentmovestoreducepolicycostsonelectricity,electricityremainsmorethan4xas
expensiveasgas.Thismakesitextremelydifficultfor
heatpumpstobecostcompetitivewithgasboilers(eventhoughtheyare3-4xmoreefficient).
ThisincreasestheimportanceofusingAItoimproveheatpumpoperation-bothimprovingefficiencyandshiftingusagesohouseholdscanbenefitfromtime-of-usetariffs.
Interoperabilityisacontinuingchallenge
LackofopenAPIsandinteroperablestandardsfordataandcontrolsremainsasignificantbarriertoapplyingAItodomesticheating.
Grand
Challenge2
EnablingNetZero
Infrastructure
18
19
Overview:EnablingNetZeroInfrastructure
SomeestablishedareasofAIusage,particularlyinoptimisingroutesandlayoutsfornewassets,havecontinuedtoseesteadygrowthinadoption.
Continuedpoliticalfocusonthisareameansitis
likelywewillcontinuetoseestrongfundingforAI
applicationsinthisareaoverthenexttwelvemonths(includingviatheStrategicInnovationFundand
GreenIndustriesGrowthAccelerator),butthe
potentialforbreakthroughremainsconstrainedby
challengesintegratingwithhard-to-change
bureaucraticprocesses,aswellasinsufficientdata.
Electrificationofheatingandtransportation,
combinedwithincreasedrenewables,meanswe
needbothsignificantexpansionofourelectricity
networksandwaystomanagenetworkconstraints.Deliveringattherequiredscale-andpace-isa
realchallenge,withnewrenewableprojectsheldupbydelaysoruncertaintyinnetworkconnections.
Despitesignificantattentionfromgovernmentandindustry,therehasbeenlittleprogressonapplyingAItothegridconnectionqueuethisyear.
ApplicationsofAIforreal-timeoptimisationandcontrolhavereachedreal-worldpilotstagein
offshorewindanddistributionnetworks.
20
AIapplicationsthatcouldaddressthischallenge
21
ThemesinAIadoptionforNetZeroinfrastructure
1
2
3
4
5
BigpromisesaboutAIbeingabletostreamlinegridconnectionsandaccelerateapprovalshaveyettodeliver,withthegovernment-announced
Connect
tool(matchingcapacitytodemand)havingbeenpaused.
AItoolstooptimiseinfrastructureplacementarerelativelymatureandwidelyadopted(e.g.
ContinuumOptioneer
,KinewellEnergy’s
cable
and
turbine
layoutoptimisation),reducingprojectdevelopmenttimelinesandcosts.
AIforreal-timecontrolandoptimisationofassetshasseennoticeableprogress,includingoperationalpilotsof
reinforcementlearningforwindfarmcontrol(
AIOLUS
)anddistributedcoordinationandcontrolofnetworkassets(
Constellation
).TheNationalEnergySystemOperator’s
VOLTA
programmeisscopingoutadoptionofAIwithinthenationalcontrolroom.
Cross-sectorandmulti-scaleplanningremainsakeychallengethatisstartingtobeaddressed.Therearenotabledata-sharinganddigitaltwininitiativesinthisspace(
ENSIGN
&
CReDo
+),buttheenablingconditionsforAItohavealargeimpactarenotyetinplace.
GenerativeAIhaslargelybeenlimitedtodataqualityenablers(e.g.
publicsentimentanalysis
and
datadiscovery
)andisnotcurrentlydisplacingcoreengineering/optimisationworkflows.
RouteOptimisation:ContinuumIndustries
Deployingnewenergyinfrastructureisslowandcostlybecauseplannersmustmanuallyevaluatethousandsofrouteoptionsagainstengineering,environmental,andpermittingconstraints.
ContinuumIndustries
isworkingwithmajornetworkoperators,includingNationalGrid,SSENTransmission,SGN,andNationalGasTransmission,tosolvethiswithOptioneer.
TheplatformusesAI-drivengeospatialoptimisationandconstraint-basedsearchevaluatemillionsofrouting
scenariosinminutes,balancingcost,environmentalimpact,andengineeringfeasibility.
Itdelivered
~60%reductioninprogrammetime
forSSEN’s132kVextensionand
~93%reduction
for
NGG’spipelinestudy.Thisreducescostsandacceleratesinfrastructureneededforelectrificationandhydrogentransition.In2025thetoolhasalsobeenextended
tocoverthe
screeningphase
ofrenewabledevelopment.
ContinuumarecurrentlyscalingwithliveUKdeploymentsand£8.2mSeriesAfunding.
22
23
IntelligentWindFarmControl:AIOLUS
Windfarmslose
10
-
20%oftheirpotentialoutputto"wakeeffects"
whereupstreamturbinesslowthewindfordownstreamturbines,butcurrentcontroltechnologiescan'toptimisethewholefarm.
UniversityofWarwickhasdeveloped
AIOLUS
,thefirstEuropeandeepreinforcementlearningsystemforwholewindfarmcontrol.Itusesreinforcementlearningtooptimiseturbinesettingsinreal-timetominimisewakeeffectsandmaximisefarm-wideoutput.
Inthelastyearthishasmovedfromlate-stagedevelopment
(ManchesterPrizefinalistinMay2024and£415kEPSRCgrant)intoareal-worldpilotwithoperationalcontrolofawindfarm.
Thiscoulddelivera3-5%increaseinannualenergyoutput-
equivalenttopowering1millionUKhouseholdsfromexisting
windcapacitywithoutnewinfrastructure.Byoptimisingexistingassets,itreducesneedfornewlandandoffshoredevelopments.
Localgridoptimisation:Constellation
UKPowerNetworkspartneredwithABB,
GeneralElectric/GE
Vernova
,UniversityofStrathclydePNDC,andmoretodevelopthe
world’sfirstsmartsubstations
capableofanalysingmillionsof
datapointsandreconfiguringnetworksettingsinreal-time.
Smartsubstationsforecastandanalyselocalpowerflowsandcommunicatewitheachother(ratherthanrelyingoncentral
control)tofreeupcapacityandincreaseresilience.
MLmodelsaretrainedcentrallythendistributedtosubstationsforautonomousoperation,providingresiliencewhen
communicationsfail.
Thefirstsmartsubstationwasinstalled
Jan2025inMaidstone
,withfivemoretobeinstalledbySeptember2026.ThesolutionstrialledaspartofConstellationcould
savecustomersinGB
£132m
by2030.Constellationestimatestheycanalsosave
17m
tCO2by2050
iffullyrolledout.
24
25
Enablersforthenext12months
Politicalappetiteishigh
Pressuretobothkeepenergybillsdownandspeedup
connections,particularlyfordatacentres,meanspoliticalsupportforAIapplicationsinthisspaceisextremely
strong.The
AIEnergyCouncil
focusesonspeedingup
gridconnectionsandissupportedbyworkatDESNZandNESO.The
CleanPower2030
targetcreatesahard
deadline,incentivisingexperimentationwithAIsolutions.
AIcompaniesneedenergyinfrastructurenow
AccesstoenergyfordatacentresisbecomingabindingconstraintonlargeAIcompanies.Theywillinvestboth
cashandtalentinunlockingthat,andwillbepredisposedtoAI-basedsolutions.Thisislikelytoincludecreationofnewrevenuestreams-e.g.Piclo’sdatacentre
connection
accelerationprogramme
intheUSwhichisexchanging
energyflexibilityservicesforfasterconnection.
Remaininggapsandbarriers
Changingprocessesrequiresmorethantechnology
Manyoftheprocessesinvolvedininfrastructure
developmentareformalisedunderlegislationor
regulation,whichrequiresfocusedpoliticalwilltochangequickly.AImayhelpspeedupcertainelementsbut
cannotstreamlineentireprocesses(orchangecultures)inhighlyregulatedareas.
Planningdataremainsfrustratinglypatchyandopaque
Thecomplexity(andhistoricallymanualnature)ofthe
planningprocessmeansconsistent,goodqualitydataisrarelyavailable.ThismakesitchallengingtobuildAI
toolsinthisarea(see
Yottar’sdevelopmentdiary
).
Therehasbeengradualprogressonthis,andOfgem’s
latestreview
proposesimportantactionsfornetworksthatwouldfurtherclosethisgap.
Grand
Challenge3
Maximising
Flexibilityin
EnergyNetworks
27
28
Overview:MaximisingFlexibilityinEnergyNetworks
thesystemoperator,savinghundredsofthousandsoftonnesofemissionsandtensofmillionsofpounds.
AIadoptionforforecastingandoptimisationremainsmixed.Manyorganisationcontinuetorelysolelyon
statisticalforecastingandmathematicaloptimisationtechniques,butanincreasingnumber(particularly
batteryoptimisers)areutilisingMLandReinforcementLearningforcompetitiveadvantage.
Inthenext12monthsweexpecttoseeAIadoptionatscaledeliveringincreasinglylargeimpacts(both
environmentalandfinancial)acrossthisGrandChallengeduetotherapidlygrowingmarket,andstrongfitforAIcapabilities.
Ahighrenewablesfuturerequiresenergydemandtoflexsoweconsumeandstoreenergywhenthewindisblowingandthesunisshining.Thisisaradical
changeinnetworkandmarketoperation,andis
fundamentallydependentonusingAItoforecastandoptimisedemandandsupplyatmuchmoregranularlevelsthaneverbefore.
2025hasseenanaccelerationinthedeploymentofflexibilityonthenetwork,withAIplayinganessentialroleinthat.Mostoftheimpacthascomefroma
growingmarketusingexistingMLtools,ratherthannewAI-driventechnologicalbreakthroughs.
However,akeydevelopmentisthatdeeplearningbasedsolarforecastswerefullyoperationalisedby
AIapplicationsthatcouldaddressthischallenge
30
ThemesinAIadoptionforenergyflexibility
1
2
3
4
5
AI-basedvirtualpowerplantorchestrationishelpingbalancethegridatscale.Therearenowmultiple
organisations(including
Kraken
,
Kaluza
,
Flexitricity
,and
Arenko
)usingAItoaggregatedistributedenergyresourceslikeEVchargers,batteries,andindustrialloadsintovirtualpowerplantsatuptoGWscale.
AIisalsobeingusedtomatchrenewablegeneratorstodemand
atalocallevel
,increasingmarginsforrenewablesandmakingthemmoreeconomicallyviable.
Solarnowcasting
(forecastingforthenextfewhours)ismateriallyimprovingcontrol-roomdecisions,savingtensofmillionsongridoperatingcostsand
hundredsofthousandsoftonnesofCO2peryear
.
Forecastingremainsthefoundationforflexibility.ManyorganisationsrelyonMLforforecastsofdemand,generationandprice.Thelastyearhasseen
someprogress
in
research
on
foundationmodels
for
forecastingbutthereal-worldimpactoftheseremainstobeproven.
AIisstartingtomakebuildingsflexiblegridassets.Companieslike
GridEdge
and
CarbonLaces
are
automatingreal-timeloadshiftinganddemandresponsewithAI-ledoptimisationofbuildingenergydeliver15-34%reductionsinpeakdemandintrialsduring2025.
Solarforecasting:OpenClimateFix
Solargeneration'sunpredictabilityforcesgridoperatorstomaintainexpensivefossilfuelbackupcapacity,drivingupcosts.OpenClimateFixpartneredNESOtodeploy
QuartzSolar
Thetechnologyachieved40%improvementoverpreviousforecastsandisfully
.
operationalinNESO'scontrolroom,saving
Adeepneuralnetworkcombinesmeasuredsolar
generation,numericalweatherpredictionandsatelliteimagerytopredictcloudmomentsandsolargenerationacrosstheUKoverthenextfewhours.
inbalancingcosts,withpotentialtoreach£150mby2035.
300,000tonnesofCO2and£30millionperyear
31
32
Localenergymarkets:UrbanChain
Directpeer-to-peerdomesticenergysupplycanmake
energycheaperbydecouplingrenewablesfromvolatile
wholesalegasmarkets,butisnotyetpermittedintheUK.
Instead,UrbanChainactsasaregulatedenergysupplierbutusesAIandblockchaintocreateprivatelocalenergymarketsthatmatchrenewablegeneratorswith
consumers.ThisAI-drivenoptimisationpairsrenewablegeneratorswithconsumersonahalf-hourlybasis,
deliveringupto
upto25%bettermarginsforgenerators
andsavingsforconsumers.
Thebusinessisscalingrapidly,havingrecorded
10x
revenuegrowthto£25m
on
over200GWhofassets
in2024,andispursuinga
£50mSeriesB
in2025.
33
Powersystemsfoundationmodel:GridFM
Managingthegridisdependentonsolvingaseriesof
optimal
powerflow
problems,whichisslowandcomputeintensive.
Researchersfrom
IBM,ImperialCollegeandothers
areworkingonafoundationmodel
pre
-
trainedon300,000+optimalpowerflow
problemstocreateafoundationmodelforgridoperations.
Itusesgraphneuralnetworkstolearnfundamentalpowerflowphysicsandgriddynamicsfromrealandsimulateddata.
Stillintheresearchstate,theopen-sourcecollaborationaimstodeliveranewAI-basedapproachthatprovidesordersof
magnitudefasterpowerflowsimulations.
Ifsuccessful,thishasthepotentialtomakeourexisting
optimisationofgridoperationsmoreeffective,butalsoto
potentiallyunlocknewwaysofoptimisingthegridinnear-realtime.
34
Enablersforthenext12months
TheNationalEnergySystemOperatorcontinuestodigitalise
DigitalisationofNESO’soperationsthroughtheOpenBalancingPlatformisbroadeningaccesstogridservicesfornewentrants,includingthoseusingAIoptimisation.Ithashelpedgeneratorsunderstandthereasonsforoperatingdecisions,andhascontributedtoa
five
-
foldincreaseinbatterydispatch
.The
REVEAL
platformalsoenablestestingofnovel
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年黔西南民族职业技术学院马克思主义基本原理概论期末考试模拟题及答案解析(夺冠)
- 2025年阿拉善职业技术学院马克思主义基本原理概论期末考试模拟题含答案解析(必刷)
- 2024年清徐县招教考试备考题库及答案解析(夺冠)
- 2025年武汉职业技术大学马克思主义基本原理概论期末考试模拟题附答案解析(夺冠)
- 2025年江苏工程职业技术学院马克思主义基本原理概论期末考试模拟题带答案解析
- 2025年辽宁省阜新市单招职业适应性测试题库带答案解析
- 2025年陕县招教考试备考题库及答案解析(必刷)
- 2025年重庆科技职业学院马克思主义基本原理概论期末考试模拟题含答案解析(夺冠)
- 2024年潍坊学院马克思主义基本原理概论期末考试题附答案解析(夺冠)
- 2025年静宁县招教考试备考题库附答案解析(必刷)
- T-CFLP 0016-2023《国有企业采购操作规范》【2023修订版】
- 谷雨生物2024环境、社会及管治(ESG)报告
- 2025金风变流器2.0MW故障代码手册V4
- 龙湖物业培训课件
- 反诈知识竞赛题库附答案(150 题)
- 2025年注册可靠性工程师资格认证考试题库500题(含真题、重点题)
- 个人购房合同样本大全
- T-CBMF 91-2020 T-CCPA 17-2020 城市综合管廊结构混凝土应用技术规程
- 电力配网工程各种材料重量表总
- 抗菌药物临床应用指导原则
- 一点一策模板课件
评论
0/150
提交评论