2025年人工智能在脱碳领域的应用状况研究报告(英文版)-_第1页
2025年人工智能在脱碳领域的应用状况研究报告(英文版)-_第2页
2025年人工智能在脱碳领域的应用状况研究报告(英文版)-_第3页
2025年人工智能在脱碳领域的应用状况研究报告(英文版)-_第4页
2025年人工智能在脱碳领域的应用状况研究报告(英文版)-_第5页
已阅读5页,还剩82页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

StateofAIfor

Decarbonisation2025

January2026

1

2

Contents

3Introduction

10UnlockingDomesticDecarbonisation

18EnablingNetZeroInfrastructure

27MaximisingFlexibilityinEnergyNetworks

36DecarbonisingManufacturingInputs

44ImprovingManufacturingProcessEfficiency

53OptimisingSoilManagement

62MinimisingMethaneinAgriculture

70OptimisingEVInfrastructureandCharging

78DecarbonisingFreightandFleets

3

2025:lotsofhype,sometangibleprogress

Thehype

AIhasbeenconstantlyintheheadlinesthisyear.Jaw-

droppinglylargeinvestmentsinAIdatacentres

underpinnedUSeconomicgrowth.Securingenough

energyforthosedatacentresbecameamajorconcern

andtechcompaniesstartedfundingnuclearpowerplantsandgridreinforcement.Businessesaroundtheworld

startedintegratinggenerativeAIintotheirsoftwareandprocesses,withmixedresults.Debatesaboutthefutureofworkintensified,withpeopleeitherworriedorexcitedaboutAI’spotentialtoautomatejobs.Evennational

carbonbudgetsstartedincludingassumptionsthatAIcouldsavemillionsoftonnesofCO2emissions.

Butamidstthattorrentofnewsandhypeitcanbehardtofindtheanswertoanimportantquestion:howeffectivelyisAIbeingappliedtokeysocietalchallengeslike

decarbonisation?

Thereality

ThisannualreportanswersthatquestionwithareviewofhowUKapplicationsofAIfordecarbonisationhavematuredoverthelastyear.Thisrangesfrom

applicationsthatarereachingscaleandmeaningfullycontributingtonationaldecarbonisation,throughto

earlierstageresearchthathasmadenotableprogress.

Therehavebeentangiblestepsforwardinsomeareas

thisyear.AI-poweredEVchargingisalreadyplayingasignificantroleinmanagingourlowcarbonelectricitygrid.HeatpumpinstallationsarequickerandcheaperbecauseofAI.SteelfurnacesandcementplantsarereducingemissionsthroughAI-optimisedoperations.

ButinotherareasprogresshasbeensloworhinderedbygenerativeAIhype.Lotsmoreworkisrequiredto

fullyrealisethebenefitsofAIfordecarbonisation.

4

MeasuringprogressonthenineGrandChallenges

Inour

originalreport

ADViCEidentified

sevendecarbonisationGrandChallengeswhereAIcouldmosthaveimpact.

Thisyearwehavealsoaddedtwotransport-relatedGrandChallenges.

EachGrandChallengeisbrokendownintomorespecificchallengesforAItotackleinthe

DecarbonisationChallengeCards

.

ToidentifyprogressthisyeartheADViCE

teamofdomainexpertsreviewedpotentialexamplesofprogressineachspecific

challenge(sourcedusingAI-basedresearchtoolsandconversationswithstakeholders).ForeachGrandChallengetheexpertsthenidentifiedkeythemesandexamplesof

whereAIhasmadeprogressin2025.

5

Overallprogressin2025

In2025AIhadameasurableimpactontheUK’sabilitytooperatealowcarbonelectricitygrid.AI-poweredsolarnowcastingreducedemissionsbyanestimated300,000tonnes,smartEVchargingloweredpeakelectricityusagefromEVsby42%andvirtualpowerplantshelpedbalancethegrid.

ThisyearsawanotablestepforwardinAIapplicationstodomesticdecarbonisationwiththenationalrolloutoftwoAItoolslookingtostreamlinedifferentpartsoftheheatpumpinstallationjourney.

Inmanufacturingandtransport,adoptionofAIforprocessefficiencyandoptimisationcontinuedtogrow.Largerorganisationsstartedtomovefromdemonstrationtodeployment,thoughsmaller

organisationstypicallylaggedbehind.

AIforsoilmanagementprogressedfromtheoreticalpilotingtoearlycommercialisation,whileapplicationstoagriculturalmethanereductionmadesomeprogressattheresearchstage.

LessprogresswasmadeonapplyingAItodecarbonisingmanufacturinginputsorelectrifyingfreight,partlyduetothehighcapitalcostsinvolved.ThesemayneedadditionalinterventionstoaccelerateAIadoption.

Visualsummaryofprogress

ShownbelowisanassessmentofhowfarsolutionsforeachGrandChallengeprogressedbetween2024and2025,alongwitharoughestimateofpotentialprogressin2026basedontheenablersandblockersidentifiedinthisreport.

NosignificantEarlyexploratoryMajorresearchProofofconceptPilotsinsomeMeaningfulimpactforGrowingimpactNational-scaleMaximumdecarbonisation

decarbonisationimpactimpact

workresearchprogrammesdemonstratorsorganisationsindividualorgsacrosssector

I

Unlockingdomesticdecarbonisation

20242025⃞2026

EnablingNetZeroinfrastructure2024一20252026

20242025

2026

-----⃞

Decarbonisingmanufacturinginputs

Improvingmanufacturingprocessefficiency

Optimisingsoilmanagement

Minimisingmethaneinagriculture

OptimisingEVinfrastructureandcharging

Decarbonisingfreightandfleets

2026

2025

2024

2026

2024

2025

------------⃞

2026

2024—一2025

--------------⃞

2026*

20242025

2026

2024

2025

Maximisingflexibilityinenergynetworks202420252026*

2024

Key

Maturityattheendof2024

Maturityattheendof2025

Potential

maturityattheendof2026

(estimate)

2025

2026

6

*Note:shorterarrowsfor2026in‘National-scaledecarbonisationimpact’arenotanindicatorprogressisexpectedtoslow,butbecausethefigureisfocusedonthegrandchallengesinearlierstages.AI’sdecarbonisationimpactforthemorematurechallengesisexpectedtogrowsteadilyin2026andfuturereportsmaystarttotrackthatmoreclearly.

7

Somekeynumbersfrom2025

79%

ofEVowners

haveasmart

charger

300,000

tonnesofCO2

avoidedeach

yearusingsolar

nowcasting

1500

farmsusing

autonomous

droneflightsto

inspectcrops

2%

reductioninCO2

fromcement

productionusing

AI

50%

reductioninheat

pump

installationtime

usingAItools

Thestartupecosystemcontinuestogrow

TheUKAIfordecarbonisationecosystemhasshownsteadygrowthinrecentyears.Mostcompaniesareintheseedandventurestage,whichbroadlymirrorstheoverallAIecosystemintheUK.

ActiveCompanies

379*

366

7%

343

307

12%

268

Seed

236

45%

Venture

Growth

Established

36%

20202021202220232024Q3*2025

8*DatasourcedfromBeauhurstcompanydatabaseonaselectionof380companiesidentifiedthroughacustomquery.DatacollectedupuntilQ3of2025.Categoriesofevolutionstagesofcompaniescanbefound

here

Isthisreportmissingsomething?

Youcancontactusat

ADViCE@turing.ac.uk

,or

signupto

ourmailinglist

tobenotifiedofthewebinars,workshopsandinperson

eventsthatwehost.MoredetailsaboutthelaunchofthedatabaseofAIfor

decarbonisationsolutionswillbeannouncedshortly.Wealsohavea

knowledge

base

withkeyresources.

AboutADViCE

AIforDecarbonisation’s

VirtualCentreofExcellence(ADViCE)isaprogrammefundedbytheDepartmentforEnergySecurityandNetZero.Itisapartnership

betweenDigitalCatapult,EnergySystemsCatapultandTheAlanTuring

Institute.

ADViCE

existstojoinuptheAIfor

decarbonisationecosystem.We’realwayskeentohearaboutwhatyou’redoinginthisspace.

Thisisanannualreportandforfuture

editionswewillbeworkingwiththe

ecosystemtocurateacontinuallyupdateddatabaseofAIfordecarbonisation

solutionsandtheirprogress.

We’dlovetohearfromyouwhetheryou:

•haveadecarbonisationchallengeyouthinkismissing

•areworkingonanAIsolutionthatisdeliveringdecarbonisation

•orjustknowaboutsomethinginterestingwehaven’tcovered.

9

Grand

Challenge1

Unlocking

Domestic

Decarbonisation

10

11

Overview:UnlockingDomesticDecarbonisation

TherearesomewellstudiedAIapplication

areaswhichhavebothacademicresearchandahandfulofearly-stagecommercialofferings,butfewexamplesofsuccessatscaleyet.

BothdataavailabilityandthepotentialmarketforAIaregrowingasdomesticdecarbonisationpicksupspeed.

Residentialheatingisresponsibleformorethan13%ofgreenhousegasemissionseachyear,

andsoisessentialindecarbonisingtheUK

economy.However,decarbonisinghomes

requireschangestobothheatingsystemsandconsumerbehavioursineveryhomeintheUK.Engagingconsumersinthatprocess,financingit,anddeliveringitatpaceareallmajor

challenges.

Therehavebeenanumberoflargepublic

sectorinnovationfundingprogrammesinthisareaoverthelastfewyears,includingtheNetZeroHeatprogramme.

ThisyearsawanotablestepforwardinAI

applicationstothisareawiththenationalrolloutoftwoAItoolslookingtostreamlinedifferent

partsoftheheatpumpinstallationjourney.

12

AIapplicationsthatcouldaddressthischallenge

13

ThemesinAIadoptionfordomesticdecarbonisation

1

2

3

4

5

UseofAIinacceleratingheatingsystemdesignhasmovedfrompilots(e.g.

Geo

’sAISmartHeatPathwayin

2022-24)tonational-scaleproductlaunches(

HeatGeek’sZeroDisruptAI

)thatarehelpingtosignificantlyreduceheatpumpinstallationcosts.

Frictionintheadminprocessforlowcarbontechnology(LCT)installshasbeenreducednationwide,withtheabilitytoprovidesame-dayauto-approvalsforLCTinstallsusing

ENA’sConnectDirect

.

Specialistchatbotsaimedatsupporting

installers

and

consumers

withheatpumpinstallationshavebeendevelopedandtrialled–includingapublic-facingrollout–buthavenotyetseensignificanttraction.

AdoptionofAItoimproveidentificationofvulnerableenergyconsumersisnowwidespread,from

callanalysisby

ScottishPower

,to

fuelpovertyriskmapping

tobettertargetgrantsupport,toSSEN

forecastingfuturevulnerability

atalocallevel.

AItoautomaticallybreaksmartmeterusageintodifferentappliances(knownasnon-intrusiveloadmonitoring,NILM)remainsanactiveareaofacademicresearch.Itisalreadyemployedinanumberofconsumer-facingappsincluding

Loop

,whichhashelped>150kusersreduceenergyusagebyanaverageof15%.

Heatpumpdesign:HeatGeekZeroDisrupt

HeatGeek

haveusedAIextensivelyinautomatingpartsoftheheatingsystemdesignprocess.Thisincludes:

•LiDAR-basedautomatedinternalsurveyingofhomes

•Computervision-basedheatpumpsitingassessment

•Automationofformpopulationandcommunications

•AI-basedselectionofoptimaldesignparameterstoachievetargetefficiencyatminimumcost

Intrialsthishas

reducedcosttocustomers

*by~75%andinstallationtimeby~50%,andhasnowbeenrolledout

nationallyandisinusebyallHeatGeekinstallers.

Thisdirectlyaddressesthecostanddisruptionchallengesthatareslowingheatpumpadoptionandislikelyto

significantlyacceleratetherateofheatpumpinstallations.

14*afterboiler

upgradeschemegrantsof£7.5karetakenintoaccount

15

Connectionapproval:ENAConnectDirect

The

EnergyNetworkAssociation

haveintegratedAIintothenationalconnectionapplicationservicefordomesticlow

carbontechnologies(LCTs)likeheatpumpsandEVchargers.

Itutilisescomputervisionto

reviewphotosofcut

-

outs

(essentiallythefusebetweenahomeandthegrid)to

removetheneedforahumantorevieweveryphotoandenableinstantapprovalofapplicationswhereitwasclearnocut-outupgradewasrequired.

Ithasreducedthetimeandcostofcompletingpaperworkforinstallersandhasbeenusedtospeedupover

185kLCT

approvals

forconsumers.

16

Enablersforthenext12months

Heatpumpinstallationsincreasing

HeatpumpinstallationratesareincreasingandtheUKnowhasover

300,000heatpumps

installed.

ThismeansthereisbothmoredataavailablefortrainingAI(including

freedatafromtrials

)andalargermarkettodriverevenuesforAIinnovators.

Smartmeterdatastartstobecomemoreavailable

Severalongoinginitiatives

tomakeaccesstosmartmeterdataeasierareunlikelytohaveanimpactin2026,but

syntheticsmartmeterdata

isavailablenow.

GenerativeAItoolingmatures

AsgenerativeAImodels(andassociatedtooling)mature,itbecomesincreasinglyfeasibleforthemtobeusedatscaletosupportconsumersindecarbonisingtheirhomes.

17

Remaininggapsandbarriers

Electricityremainsmoreexpensivethangas

Despiterecentgovernmentmovestoreducepolicycostsonelectricity,electricityremainsmorethan4xas

expensiveasgas.Thismakesitextremelydifficultfor

heatpumpstobecostcompetitivewithgasboilers(eventhoughtheyare3-4xmoreefficient).

ThisincreasestheimportanceofusingAItoimproveheatpumpoperation-bothimprovingefficiencyandshiftingusagesohouseholdscanbenefitfromtime-of-usetariffs.

Interoperabilityisacontinuingchallenge

LackofopenAPIsandinteroperablestandardsfordataandcontrolsremainsasignificantbarriertoapplyingAItodomesticheating.

Grand

Challenge2

EnablingNetZero

Infrastructure

18

19

Overview:EnablingNetZeroInfrastructure

SomeestablishedareasofAIusage,particularlyinoptimisingroutesandlayoutsfornewassets,havecontinuedtoseesteadygrowthinadoption.

Continuedpoliticalfocusonthisareameansitis

likelywewillcontinuetoseestrongfundingforAI

applicationsinthisareaoverthenexttwelvemonths(includingviatheStrategicInnovationFundand

GreenIndustriesGrowthAccelerator),butthe

potentialforbreakthroughremainsconstrainedby

challengesintegratingwithhard-to-change

bureaucraticprocesses,aswellasinsufficientdata.

Electrificationofheatingandtransportation,

combinedwithincreasedrenewables,meanswe

needbothsignificantexpansionofourelectricity

networksandwaystomanagenetworkconstraints.Deliveringattherequiredscale-andpace-isa

realchallenge,withnewrenewableprojectsheldupbydelaysoruncertaintyinnetworkconnections.

Despitesignificantattentionfromgovernmentandindustry,therehasbeenlittleprogressonapplyingAItothegridconnectionqueuethisyear.

ApplicationsofAIforreal-timeoptimisationandcontrolhavereachedreal-worldpilotstagein

offshorewindanddistributionnetworks.

20

AIapplicationsthatcouldaddressthischallenge

21

ThemesinAIadoptionforNetZeroinfrastructure

1

2

3

4

5

BigpromisesaboutAIbeingabletostreamlinegridconnectionsandaccelerateapprovalshaveyettodeliver,withthegovernment-announced

Connect

tool(matchingcapacitytodemand)havingbeenpaused.

AItoolstooptimiseinfrastructureplacementarerelativelymatureandwidelyadopted(e.g.

ContinuumOptioneer

,KinewellEnergy’s

cable

and

turbine

layoutoptimisation),reducingprojectdevelopmenttimelinesandcosts.

AIforreal-timecontrolandoptimisationofassetshasseennoticeableprogress,includingoperationalpilotsof

reinforcementlearningforwindfarmcontrol(

AIOLUS

)anddistributedcoordinationandcontrolofnetworkassets(

Constellation

).TheNationalEnergySystemOperator’s

VOLTA

programmeisscopingoutadoptionofAIwithinthenationalcontrolroom.

Cross-sectorandmulti-scaleplanningremainsakeychallengethatisstartingtobeaddressed.Therearenotabledata-sharinganddigitaltwininitiativesinthisspace(

ENSIGN

&

CReDo

+),buttheenablingconditionsforAItohavealargeimpactarenotyetinplace.

GenerativeAIhaslargelybeenlimitedtodataqualityenablers(e.g.

publicsentimentanalysis

and

datadiscovery

)andisnotcurrentlydisplacingcoreengineering/optimisationworkflows.

RouteOptimisation:ContinuumIndustries

Deployingnewenergyinfrastructureisslowandcostlybecauseplannersmustmanuallyevaluatethousandsofrouteoptionsagainstengineering,environmental,andpermittingconstraints.

ContinuumIndustries

isworkingwithmajornetworkoperators,includingNationalGrid,SSENTransmission,SGN,andNationalGasTransmission,tosolvethiswithOptioneer.

TheplatformusesAI-drivengeospatialoptimisationandconstraint-basedsearchevaluatemillionsofrouting

scenariosinminutes,balancingcost,environmentalimpact,andengineeringfeasibility.

Itdelivered

~60%reductioninprogrammetime

forSSEN’s132kVextensionand

~93%reduction

for

NGG’spipelinestudy.Thisreducescostsandacceleratesinfrastructureneededforelectrificationandhydrogentransition.In2025thetoolhasalsobeenextended

tocoverthe

screeningphase

ofrenewabledevelopment.

ContinuumarecurrentlyscalingwithliveUKdeploymentsand£8.2mSeriesAfunding.

22

23

IntelligentWindFarmControl:AIOLUS

Windfarmslose

10

-

20%oftheirpotentialoutputto"wakeeffects"

whereupstreamturbinesslowthewindfordownstreamturbines,butcurrentcontroltechnologiescan'toptimisethewholefarm.

UniversityofWarwickhasdeveloped

AIOLUS

,thefirstEuropeandeepreinforcementlearningsystemforwholewindfarmcontrol.Itusesreinforcementlearningtooptimiseturbinesettingsinreal-timetominimisewakeeffectsandmaximisefarm-wideoutput.

Inthelastyearthishasmovedfromlate-stagedevelopment

(ManchesterPrizefinalistinMay2024and£415kEPSRCgrant)intoareal-worldpilotwithoperationalcontrolofawindfarm.

Thiscoulddelivera3-5%increaseinannualenergyoutput-

equivalenttopowering1millionUKhouseholdsfromexisting

windcapacitywithoutnewinfrastructure.Byoptimisingexistingassets,itreducesneedfornewlandandoffshoredevelopments.

Localgridoptimisation:Constellation

UKPowerNetworkspartneredwithABB,

GeneralElectric/GE

Vernova

,UniversityofStrathclydePNDC,andmoretodevelopthe

world’sfirstsmartsubstations

capableofanalysingmillionsof

datapointsandreconfiguringnetworksettingsinreal-time.

Smartsubstationsforecastandanalyselocalpowerflowsandcommunicatewitheachother(ratherthanrelyingoncentral

control)tofreeupcapacityandincreaseresilience.

MLmodelsaretrainedcentrallythendistributedtosubstationsforautonomousoperation,providingresiliencewhen

communicationsfail.

Thefirstsmartsubstationwasinstalled

Jan2025inMaidstone

,withfivemoretobeinstalledbySeptember2026.ThesolutionstrialledaspartofConstellationcould

savecustomersinGB

£132m

by2030.Constellationestimatestheycanalsosave

17m

tCO2by2050

iffullyrolledout.

24

25

Enablersforthenext12months

Politicalappetiteishigh

Pressuretobothkeepenergybillsdownandspeedup

connections,particularlyfordatacentres,meanspoliticalsupportforAIapplicationsinthisspaceisextremely

strong.The

AIEnergyCouncil

focusesonspeedingup

gridconnectionsandissupportedbyworkatDESNZandNESO.The

CleanPower2030

targetcreatesahard

deadline,incentivisingexperimentationwithAIsolutions.

AIcompaniesneedenergyinfrastructurenow

AccesstoenergyfordatacentresisbecomingabindingconstraintonlargeAIcompanies.Theywillinvestboth

cashandtalentinunlockingthat,andwillbepredisposedtoAI-basedsolutions.Thisislikelytoincludecreationofnewrevenuestreams-e.g.Piclo’sdatacentre

connection

accelerationprogramme

intheUSwhichisexchanging

energyflexibilityservicesforfasterconnection.

Remaininggapsandbarriers

Changingprocessesrequiresmorethantechnology

Manyoftheprocessesinvolvedininfrastructure

developmentareformalisedunderlegislationor

regulation,whichrequiresfocusedpoliticalwilltochangequickly.AImayhelpspeedupcertainelementsbut

cannotstreamlineentireprocesses(orchangecultures)inhighlyregulatedareas.

Planningdataremainsfrustratinglypatchyandopaque

Thecomplexity(andhistoricallymanualnature)ofthe

planningprocessmeansconsistent,goodqualitydataisrarelyavailable.ThismakesitchallengingtobuildAI

toolsinthisarea(see

Yottar’sdevelopmentdiary

).

Therehasbeengradualprogressonthis,andOfgem’s

latestreview

proposesimportantactionsfornetworksthatwouldfurtherclosethisgap.

Grand

Challenge3

Maximising

Flexibilityin

EnergyNetworks

27

28

Overview:MaximisingFlexibilityinEnergyNetworks

thesystemoperator,savinghundredsofthousandsoftonnesofemissionsandtensofmillionsofpounds.

AIadoptionforforecastingandoptimisationremainsmixed.Manyorganisationcontinuetorelysolelyon

statisticalforecastingandmathematicaloptimisationtechniques,butanincreasingnumber(particularly

batteryoptimisers)areutilisingMLandReinforcementLearningforcompetitiveadvantage.

Inthenext12monthsweexpecttoseeAIadoptionatscaledeliveringincreasinglylargeimpacts(both

environmentalandfinancial)acrossthisGrandChallengeduetotherapidlygrowingmarket,andstrongfitforAIcapabilities.

Ahighrenewablesfuturerequiresenergydemandtoflexsoweconsumeandstoreenergywhenthewindisblowingandthesunisshining.Thisisaradical

changeinnetworkandmarketoperation,andis

fundamentallydependentonusingAItoforecastandoptimisedemandandsupplyatmuchmoregranularlevelsthaneverbefore.

2025hasseenanaccelerationinthedeploymentofflexibilityonthenetwork,withAIplayinganessentialroleinthat.Mostoftheimpacthascomefroma

growingmarketusingexistingMLtools,ratherthannewAI-driventechnologicalbreakthroughs.

However,akeydevelopmentisthatdeeplearningbasedsolarforecastswerefullyoperationalisedby

AIapplicationsthatcouldaddressthischallenge

30

ThemesinAIadoptionforenergyflexibility

1

2

3

4

5

AI-basedvirtualpowerplantorchestrationishelpingbalancethegridatscale.Therearenowmultiple

organisations(including

Kraken

,

Kaluza

,

Flexitricity

,and

Arenko

)usingAItoaggregatedistributedenergyresourceslikeEVchargers,batteries,andindustrialloadsintovirtualpowerplantsatuptoGWscale.

AIisalsobeingusedtomatchrenewablegeneratorstodemand

atalocallevel

,increasingmarginsforrenewablesandmakingthemmoreeconomicallyviable.

Solarnowcasting

(forecastingforthenextfewhours)ismateriallyimprovingcontrol-roomdecisions,savingtensofmillionsongridoperatingcostsand

hundredsofthousandsoftonnesofCO2peryear

.

Forecastingremainsthefoundationforflexibility.ManyorganisationsrelyonMLforforecastsofdemand,generationandprice.Thelastyearhasseen

someprogress

in

research

on

foundationmodels

for

forecastingbutthereal-worldimpactoftheseremainstobeproven.

AIisstartingtomakebuildingsflexiblegridassets.Companieslike

GridEdge

and

CarbonLaces

are

automatingreal-timeloadshiftinganddemandresponsewithAI-ledoptimisationofbuildingenergydeliver15-34%reductionsinpeakdemandintrialsduring2025.

Solarforecasting:OpenClimateFix

Solargeneration'sunpredictabilityforcesgridoperatorstomaintainexpensivefossilfuelbackupcapacity,drivingupcosts.OpenClimateFixpartneredNESOtodeploy

QuartzSolar

Thetechnologyachieved40%improvementoverpreviousforecastsandisfully

.

operationalinNESO'scontrolroom,saving

Adeepneuralnetworkcombinesmeasuredsolar

generation,numericalweatherpredictionandsatelliteimagerytopredictcloudmomentsandsolargenerationacrosstheUKoverthenextfewhours.

inbalancingcosts,withpotentialtoreach£150mby2035.

300,000tonnesofCO2and£30millionperyear

31

32

Localenergymarkets:UrbanChain

Directpeer-to-peerdomesticenergysupplycanmake

energycheaperbydecouplingrenewablesfromvolatile

wholesalegasmarkets,butisnotyetpermittedintheUK.

Instead,UrbanChainactsasaregulatedenergysupplierbutusesAIandblockchaintocreateprivatelocalenergymarketsthatmatchrenewablegeneratorswith

consumers.ThisAI-drivenoptimisationpairsrenewablegeneratorswithconsumersonahalf-hourlybasis,

deliveringupto

upto25%bettermarginsforgenerators

andsavingsforconsumers.

Thebusinessisscalingrapidly,havingrecorded

10x

revenuegrowthto£25m

on

over200GWhofassets

in2024,andispursuinga

£50mSeriesB

in2025.

33

Powersystemsfoundationmodel:GridFM

Managingthegridisdependentonsolvingaseriesof

optimal

powerflow

problems,whichisslowandcomputeintensive.

Researchersfrom

IBM,ImperialCollegeandothers

areworkingonafoundationmodel

pre

-

trainedon300,000+optimalpowerflow

problemstocreateafoundationmodelforgridoperations.

Itusesgraphneuralnetworkstolearnfundamentalpowerflowphysicsandgriddynamicsfromrealandsimulateddata.

Stillintheresearchstate,theopen-sourcecollaborationaimstodeliveranewAI-basedapproachthatprovidesordersof

magnitudefasterpowerflowsimulations.

Ifsuccessful,thishasthepotentialtomakeourexisting

optimisationofgridoperationsmoreeffective,butalsoto

potentiallyunlocknewwaysofoptimisingthegridinnear-realtime.

34

Enablersforthenext12months

TheNationalEnergySystemOperatorcontinuestodigitalise

DigitalisationofNESO’soperationsthroughtheOpenBalancingPlatformisbroadeningaccesstogridservicesfornewentrants,includingthoseusingAIoptimisation.Ithashelpedgeneratorsunderstandthereasonsforoperatingdecisions,andhascontributedtoa

five

-

foldincreaseinbatterydispatch

.The

REVEAL

platformalsoenablestestingofnovel

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论