




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第2课时圆柱、圆锥、圆台、球的结构特征,1.了解圆柱、圆锥、圆台、球的定义,知道这四种几何体的结构特征,能够识别和区分这些几何体.2.了解柱体、锥体、台体之间的关系.,1,2,3,4,1.圆柱,1,2,3,4,规定:圆柱和棱柱统称为柱体.,归纳总结圆柱的简单性质:(1)圆柱有无数条母线,它们平行且相等.(2)平行于底面的截面是与底面大小相同的圆,如图所示.(3)过轴的截面(轴截面)都是全等的矩形,如图所示.(4)过任意两条母线的截面是矩形,如图所示.,1,2,3,4,【做一做1】给出下列几种说法:圆柱的底面都是圆;连接圆柱上、下底面圆周上任意两点的线段是圆柱的母线;矩形的任意一条边都可以作为轴
2、,其他边绕其旋转围成圆柱.其中正确的个数为()A.0B.1C.2D.3解析:正确,不正确.答案:C,1,2,3,4,规定:棱锥与圆锥统称为锥体.,1,2,3,4,归纳总结圆锥的简单性质:(1)圆锥有无数条母线,它们有公共点即圆锥的顶点,且长度相等.(2)平行于底面的截面都是圆,如图所示.(3)过轴的截面都是全等的等腰三角形,如图所示.(4)过任意两条母线的截面是等腰三角形,如图所示.,1,2,3,4,【做一做2】已知圆锥SO的母线长为5,底面直径为8,则圆锥SO的高h=.解析:如图,设圆锥的母线长为l,底面半径为r,则圆锥的母线长l、高h、底面半径r构成直角三角形,即圆锥的高为3.答案:3,1
3、,2,3,4,1,2,3,4,规定:棱台与圆台统称为台体.,归纳总结圆台的简单性质:(1)圆台有无数条母线,且它们相等,延长后相交于一点.(2)平行于底面的截面是圆,如图所示.(3)过轴的截面都是全等的等腰梯形,如图所示.(4)过任意两条母线的截面是等腰梯形,如图所示.,1,2,3,4,【做一做3】关于圆台,下列说法正确的是.(只填序号)两个底面平行且全等;圆台的母线有无数条;圆台的母线长大于高的长;两个底面圆心的连线是高.解析:圆台的上底面和下底面是两个大小不同的圆,则不正确,正确.答案:,1,2,3,4,1,2,3,4,知识拓展1.球面的定义:与定点的距离等于定长的所有点的集合(轨迹)叫做
4、球面.2.如果点到球心的距离小于球的半径,那么这样的点在球的内部;如果点到球心的距离大于球的半径,那么这样的点在球的外部.,1,2,3,4,【做一做4】球的任意两条直径不具有的性质是()A.相交B.平分C.垂直D.都经过球心答案:C,1,2,1.圆柱、圆锥、圆台之间的关系剖析:圆柱、圆锥、圆台的形状不同,它们之间既有区别又有联系,并且在一定条件下可以相互转化.当圆台的下底面保持不变,而上底面越来越大且接近于下底面时,圆台就越来越接近于圆柱,当上底面增大到与下底面相同时,圆台转化为圆柱;当圆台的上底面越来越小时,圆台就越来越接近于圆锥,当上底面收缩为一个点时,圆台就转化为圆锥了.,1,2,2.圆
5、柱、圆锥、圆台、球的结构特征比较剖析:如下表所示.,1,2,题型一,题型二,题型三,【例1】一个有30角的直角三角尺绕其各条边所在直线旋转360所得的几何体是圆锥吗?如果以斜边上的高所在的直线为轴旋转180能得到什么几何体?解:如图和图所示,绕其直角边所在直线旋转360形成的曲面所围成的几何体是圆锥;如图所示,绕其斜边所在直线旋转360形成的曲面所围成的几何体是两个同底相对的圆锥;如图所示,绕其斜边上的高所在直线旋转180形成的曲面所围成的几何体是两个半圆锥.,题型一,题型二,题型三,反思判断旋转体形状的步骤:(1)明确旋转轴l;(2)确定平面图形中各边(通常是线段)与l的位置关系;(3)依据
6、圆柱、圆锥、圆台、球的定义和下列结论来确定形状(线段若与l相交,则线段的一个端点为交点):与l垂直且相交的线段绕l旋转一周得圆面;与l垂直且不相交的线段绕l旋转一周得圆环面;与l平行的线段绕l旋转一周得圆柱侧面;与l不相交,但延长后交于一点的线段绕l旋转一周得圆台侧面;与l相交的线段绕l旋转一周得圆锥侧面.,题型一,题型二,题型三,【变式训练1】下列图形(中轴两边的图形全等)绕给出的轴旋转一周形成的曲面所围成的几何体为圆台的是.(只填序号)解析:形成的是圆台;形成的是半球;形成的是圆柱;形成的是圆台.答案:,题型一,题型二,题型三,【例2】如图,用一个平行于圆锥SO底面的平面截这个圆锥,截得的
7、圆台上、下底面的面积之比为116,截去的圆锥的母线长是3cm,求圆台OO的母线长.,题型一,题型二,题型三,解:设圆台OO的母线长为lcm,由截得的圆台上、下底面的面积之比为116,可设圆台的上、下底面的半径分别为r,4r.过轴SO作圆锥SO的截面,如图所示.则SOASOA,SA=3cm.故圆台OO的母线长为9cm.,题型一,题型二,题型三,反思用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),并结合旋转体中的经过旋转轴的截面(轴截面)的性质,利用相似三角形中的相似比,构造相关几何变量的方程组而得解.,题型一,题型二,题型三,【变式训练2】已知一个圆柱的轴截面是
8、一个正方形,且此正方形的面积是S,则此圆柱的底面半径为.,题型一,题型二,题型三,易错点:对几何体的概念和特征把握不准而致错【例3】下列说法:圆台上底面的面积与下底面的面积之比一定不等于1;矩形绕任意一条直线旋转都可以形成圆柱;圆锥的母线长一定大于圆锥底面圆的直径;圆台的上、下底面不一定平行,但过圆台侧面上每一点的母线长都相等.其中正确的序号为.,题型一,题型二,题型三,错解:错因分析:产生上述错误答案的原因是仅根据相应概念的某一个方面去判断几何体,没有全面把握几何体的结构特征.正解:圆台的上、下底面大小不相等,所以面积的比值一定不等于1,故正确;以矩形的一边所在直线为轴旋转一周,形成圆柱,故不正确;圆锥的轴截面为等腰三角形,腰长为母线长,底边长为底面直径,而腰长不一定大于底边长,故不正确;圆台的上、下底面平行,故不正确.答案:,题型一,题型二,题型三,反思1.判断简单旋转体结构特征
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 双十一营销策划报告
- 新材料产业前沿技术及市场机遇研究报告
- 工程造价管理师对项目成本的精准控制以2025年为例
- 六年级生产劳动类课程教学的策略探究
- 创新预制菜食材解决方案市场潜力分析
- 劳动实验基地数学元素呈现课例分析
- 金融行业合规经营与法律风险防范培训课程
- 专题特训四全等三角形中的动态问题
- 光储一体绿色能源新纪元:光伏电站碳排放计量认证展望
- 家庭金融服务模式创新与产品设计策略研究报告
- 光伏工程施工组织设计
- 美术编辑岗位招聘笔试题与参考答案(某大型集团公司)2025年
- DB53∕T 1269-2024 改性磷石膏用于矿山废弃地生态修复回填技术规范
- 弱电工程招标文件样本
- 压力容器事故应急预案
- 招聘工作人员笔试考务手册
- 2024年秋新版人教版三年级英语上册电子课本
- 2024-2034年中国油桐种植行业市场调查研究及投资战略咨询报告
- 六君子汤的现代中药制剂研究
- 管理思维培训
- 中国古代安全文化发展及其启示
评论
0/150
提交评论