人教版八年级上册1111三角形的边教案设计_第1页
人教版八年级上册1111三角形的边教案设计_第2页
人教版八年级上册1111三角形的边教案设计_第3页
人教版八年级上册1111三角形的边教案设计_第4页
人教版八年级上册1111三角形的边教案设计_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、人教版八年级上册1111三角形的边教案设计 教学目标 1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形. 2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系. 3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题. 4.帮助学生树立几何知识源于客观实际,用客观实际的观念,激发学生学习的兴趣. 重点难点 重点: 1.对三角形有关概念的了解,能用符号语言表示三条形. 2.能从图中识别三角形. 3.通过度量三角形的边长的实践活动,从中理解三角形三边间的不等关系. 难点: 1.在具体的图形中不重复,且不遗漏地识别所有三角形. 2.用三角形

2、三边不等关系判定三条线段可否组成三角形. 教学过程 一、看一看 1.教师叙述: 三角形是一种最常见的几何图形之一.(看条件许可, 可以把古埃及的金字塔、飞机、飞船、分子结构?的投影,给同学放映)从古埃及的金字塔到现代的飞机、上天的飞船,从宏大的建筑到微小的分子结构, 处处都有三角形的身影.结合以上的实际使学生了解到:我们所研究的“三角形”这个课题实际生活之中. 学生活动:(1)交流在日常生活中所看到的三角形. (2)选派代表说明三角形的存在于我们的生活之中. 2.板书:在黑板上老师画出以下几个图形. AB DB AA (1)C B(2)CE (3)C EDAD(4)BA (5)B (1)教师引

3、导学生观察上图:区别三条线段是否存在首尾顺序相接所组成的.图(1)三条线段AC、CB、AB是否首尾顺序相接.(是) (2)观察发现,以上的图,哪些是三角形? (3)描述三角形的特点: 板书:“不在一直线上三条线段首尾顺次相接组成的图形叫做三角形”. 教师提问:上述对三角形的描述中你认为有几个部分要引起重视. 学生回答: a.不在一直线上的三条线段. b.首尾顺次相接. 二、读一读 指导学生阅读课本,并回答以下问题: (1)什么叫三角形? (2)三角形有几条边?有几个内角?有几个顶点? (3)三角形ABC用符号表示_. (4)三角形ABC的边AB、AC和BC可用小写字母分别表示为_. 三角形有三

4、条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC用符号表示为ABC,三角形ABC的三边,AB可用边AB的所对的角C的小写字母c 表示,AC可用b表示,BC可用a表示. 三、做一做 画出一个ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗? 同学们在画图计算的过程中,展示议论,并指定回答以上问题: (1)小虫从B出发沿三角形的边爬到C有如下几条路线. a.从BC b.从BAC (2)从B沿边BC到C的路线长为BC的长. 从B沿边BA到A,从A沿边C到C的

5、路线长为BA+AC. 经过测量可以说BA+ACBC,可以说这两条路线的长是不一样的. 四、议一议 1.在用一个三角形中,任意两边之和与第三边有什么关系? 2.在同一个三角形中,任意两边之差与第三边有什么关系? 3.三角形三边有怎样的不等关系? 通过动手实验同学们可以得到哪些结论? 三角形的任意两边之和大于第三边;任意两边之差小于第三边. 五、想一想 三角形按边分可以,分成几类?按角分呢? (1)三角形按边分类如下: ?不等三角形 三角形 ?底和腰不等的等腰三角形 等腰三角形 ? 等边三角形 (2)三角形按角分类如下: ?直角三角形 三角形?锐角三角形 斜三角形 ? 钝角三角形 六、练一练 有三

6、根木棒长分别为3 cm、6 cm和2 cm,用这木棒能否围成一个三角形? 分析:(1)三条线段能否构成一个三角形, 关键在捡判定它们是否符合三角形三边的不等关系,符合即可的构成一个三角形,看不符合就不可能构成一个三角形. (2)要让学生明确两条木棒长为3cm和6cm,要想用三根木棒合起来构成一个三角形,这第三根木棒的长度应介于3 cm和8 cm之间,由于它的第三根木棒长只有2 cm,所以不可能用这三条木棒构成一个三角形. 错导:3 cm+6 cm2 cm, 用3 cm、6 cm、2 cm的木棒可以构成一个三角形. 错因:三角形的三边之间的关系为任意两边之和大于第三边,任意两边之差小于第三边,

7、这里3+62,没错,可6-3不小于2,所以回答这类问题应先确定最大边,然后看小于最大量的两量之和是否大于最大值,大时就可构成,小时就无法构成. 七、忆一忆 今天我们学了哪些内容: 1.三角形的有关概念(边、角、顶点) 2.会用符号表示一个三角形. 3.通过实践了解三角形的三边不等关系. 八、作业 1.课本习题 11.1 第1题,2题. CD相交于点O,2.补充:如图,线段AB、能否确定AB?CD 与AD?BC的大小,并加以说明 A OD CB 7.1.1 三角形的边(总第17课时) 教学目标: 知识与技能:结合三角形的实例,探索、掌握三角形3条边之间的关系. 会用符号表示三角形,了解按边关系对

8、三角形进行分类. 理解三角形三边之间的不等关系,并会初步应用它们来解决问 题. 过程与方法:结合具体实例,进一步认识三角形的概念及其基本要素,掌握 三角形三边关系。 情感、态度和价值观:通过观察、操作、想象、推理、交流等活动,发展空 间观念、推理能力和有条理地表达能力 重 点:三角形的三边之间的不等关系. 难 点:应用三角形的三边之间的不等关系判断3条线段能否组成三角形. 教学过程: 一、问题情境: 三角形是我们早已熟悉的图形,你能列举出日常生活中有什么物体是三角形吗?对于三角形,你了解了哪些方面的知识?你能画一个三角形吗? 二、新课学习: 三角形的相关概念. 什么是三角形: 如图,由不在同一

9、条直线上的三条线段首尾顺次相接 所组成的图形叫做三角形 . 三角形的有关概念: 边:组成三角形的三条线段 叫做三角形的三条边. 角:三角形相邻两边的夹角叫做三角形的内角,简称三角形的角 . 顶点:三角形相邻两边的公共端点叫做三角形的顶点. 三角形的表示: 如图以A、B、C为顶点的三角形记作“ABC ”,读作“三角形ABC”. 三角形的分类:如图 等边三角形:图中的ABC的边 ABBCAC,ABC是等边 三角形. 即:三条边都相等的三角形叫做等边三角形. 等腰三角形:图中的ABC的边 ABAC,但ABBC, ACBC,ABC是等腰 三角形. 即:有两条边相等 的三角形叫做等腰三角形.等腰三角形中

10、,相等的边 叫做腰,另一边 叫做底,两腰 的夹角叫做顶角,腰 和底 的夹角叫做底角. 注意:等边三角形是特殊 的等腰三角形,即腰和底相等的等腰三角形. 不等边三角形:图中的ABC的边ABACBCAB,ABC是不等边三角形. 即:三条边都不相等的三角形叫做不等边三角形. 综上三角形按边分类关系如下 三条边都不相等的三角形: . 三角形腰和底不相等的: . 腰和底相等的: . 练习:教材P65练习 “1”(口答) 讨论与交流: 如图,存在AB1,AB2,AB3,AB9, AB10,10条线段,且B1,B2, B10在同一条直线上, 则,图中三角形共有45 个. 三角形三边关系: 阅读教材P64“探

11、究”完成下列问题: 如图,根据线段公里“两点之间线段最短”可得,ABC的三边 满足下列关系:AB BC AC ;AB AC BC ;BC AC AB . 或:c a b ; c b a ; a b c . 即:三角形任意两边的和 大于第三边 . 上述关系也可表示为: a b c ; b c a ; c a b 或ba c ; c b a ; a c b . 即:三角形任意两边的差 小于第三边 . 注意:综合上可知:三角形任意一边小于 其他两边的和,并且大于 其他两边的差. 练习:教材P65练习“2” (口答) 说明:应用三角形三边之间的关系判定三条线段能否构成三角形时,常常只要两 条较短的线段

12、长度之和大于第三条线段的长度即可. 例解与应用:阅读教材P64例,解答下列问题: 一个等腰三角形的周长为28cm. 已知腰长是底边长的3倍,求各边的长; 已知其中一边的长为6cm,求其它两边的长. 解:设底边长为x cm ,则腰长为3x cm,根据题意得x3x3x28 解得 x4. 所以 3x3412.即:等腰三角形的三边长分别为4 cm,12 cm,12 cm . 若腰长为6cm ,则底边长为282616cm ,此时6616,故不能组成三角形,所以腰长不能为6. 若底边长为6cm,则腰长为286211cm ,它能构成三角形. 所以它的其它边长为11cm、11cm . 讨论与交流: 如果三条线

13、段的比是134;123;146;336;66 10;345.其中能构成三角形的有 2个. 若a,b,c分别是三角形的三边,化简abcbcacab . 已知一个等腰三角形的两边长分别为5cm和9cm,那么这个三角形的周长为19cm或 23cm. . 三、课堂小结: ?定义:由不在同一条直线上的三条线段首尾依次连接所组成的图形?不等边三角形?底边和腰不等的等腰三角形?按边分类?等腰三角形?等边三角形?三边不等关系:任意一边之小于其它两边的和而大于其它两边的差边? 四、课堂检测: 1.如图,共有 个三角形, 其中以AC为边的三角形有 个. 2.一个等腰三角形的两边分别为7cm和10cm,则它的周长

14、为 . 3.一个等腰三角形的两边分别为2cm和5cm;则它的周长为 . 4.一个三角形的周长为15cm,且其中两边都等于第三边的2倍,那么这个三角形的最短边长为 . 5.已知一个三角形的两边长分别为5cm和9cm,那么这个三角形的第三边x的取 值范围 是x. 六、课后作业 书面作业: 课本P69习题7.1“1”(做书上) 课本P69习题7.1“2”(做书上) 等腰三角形底边为4.腰长为b,则b一定满足( ) Ab2 B. 2b4 C. 2b8 D.b8 已知三条线段的比是:234;123;246;336;6610;6810.其中可构成三角形的有 ( ) A. 1个 B. 2个 C. 3个 D.

15、 4个 已知三角形的三边长为连续的整数,且周长为12cm,则它的最短边长为 ( ) A. 2cm B. 3cm C. 4cm D. 5cm 已知a,b,c为三角形的三边,则abcbca的化简结果是 ( ) A.2aB. 2b C.2a2b D.2b2c 已知等腰三角形的两边长分别为4cm和6cm,且它的周长大于14cm,则第三边长为 已知等腰三角形的两边长分别为4,9,求它的周长. 跟踪训练: 如图所示,为估计池塘岸边A、B的距离,小方在池塘 的一侧选取一点O,测得OA15cm,OB10cm,A、B间的 距离不可能是( ) A.20cmB.15cm C.10cm D.5cm 下列说法等边三角形是等腰三角形; 三角形任意两边的和大于第三边; 三角形按边分类可分为等腰三角形、等边三角形和不等边三角形; 三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.其中正确的有( ) A. 1个B. 2个 C. 3个 D. 4个 已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是() A.13cmB.6cm C.5cm D.4cm 三角形的一边长为5,一边长为13,则第三边x的取值范围是( ) A. 5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论