




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第四节 隐函数及由参数方程确定的函数的导数 相关变化率教学目的: 熟悉隐函数的概念;掌握隐函数的求导法则;掌握由参数方程所确定的函数的求导方法.教学重点:隐函数的导数;由参数方程所确定的函数的导;相关变化率;对数求导法 教学难点:隐函数和参数方程确定的函数的二阶导数的求法,幂指函数的求导法教学内容: 一、隐函数的导数 显函数: 形如y=f(x)的函数称为显函数. 例如y=sin x , y=ln x+e x . 隐函数: 由方程F(x, y)=0所确定的函数称为隐函数. 例如, 方程x+y3 -1=0确定的隐函数为y . 如果在方程F(x, y)=0中, 当x取某区间内的任一值时, 相应地总有
2、满足这方程的唯一的y 值存在, 那么就说方程F(x, y)=0在该区间内确定了一个隐函数. 把一个隐函数化成显函数, 叫做隐函数的显化. 隐函数的显化有时是有困难的, 甚至是不可能的. 但在实际问题中, 有时需要计算隐函数的导数, 因此, 我们希望有一种方法, 不管隐函数能否显化, 都能直接由方程算出它所确定的隐函数的导数来. 例1求由方程e y+xy-e=0所确定的隐函数y的导数. 解: 把方程两边的每一项对x 求导数得 (e y)+(xy)-(e)=(0), 即 e y y+y+xy=0, 从而 (x+e y0). 例2求由方程y5+2y-x-3x7=0所确定的隐函数y=f(x)在x=0处
3、的导数y|x=0. 解: 把方程两边分别对x求导数得 5yy+2y-1-21x 6=0,由此得 . 因为当x=0时, 从原方程得y=0, 所以 . 例3. 求椭圆在处的切线方程. 解: 把椭圆方程的两边分别对x求导, 得 . 从而 . 当x=2时, , 代入上式得所求切线的斜率 . 所求的切线方程为 , 即. 解: 把椭圆方程的两边分别对x求导, 得 . 将x=2, , 代入上式得 ,于是 k=y|x=2. 所求的切线方程为 , 即. 例4求由方程所确定的隐函数y的二阶导数. 解: 方程两边对x求导, 得 , 于是 . 上式两边再对x求导, 得 . 隐函数求导方法小结:(1)方程两端同时对求导
4、数,注意把当作复合函数求导的中间变量来看待.(2)从求导后的方程中解出来.(3)隐函数求导允许其结果中含有.但求某一点的导数时不但要把值代进去,还要把对应的值代进去. 对数求导法: 这种方法是先在y=f(x)的两边取对数, 然后再求出y的导数. 设y=f(x), 两边取对数, 得 ln y = ln f(x), 两边对x 求导, 得 , y= f(x)ln f(x). 对数求导法适用于求幂指函数y=u(x)v(x)的导数及多因子之积和商的导数. 例5求y=x sin x (x0)的导数. 解法一: 两边取对数, 得 ln y=sin x ln x, 上式两边对x 求导, 得 , 于是 . 解法
5、二: 这种幂指函数的导数也可按下面的方法求: y=x sin x=e sin xln x , . 例6. 求函数的导数. 解: 先在两边取对数(假定x4), 得 ln yln(x-1)+ln(x-2)-ln(x-3)-ln(x-4), 上式两边对x求导, 得 ,于是 .当x1时, ; 当2x4, x1, 2x3三种情况讨论, 但结果都是一样的. 二、由参数方程所确定的函数的导数 设y与x的函数关系是由参数方程确定的. 则称此函数关系所表达的函数为由参数方程所确定的函数. 在实际问题中, 需要计算由参数方程所确定的函数的导数. 但从参数方程中消去参数t 有时会有困难. 因此, 我们希望有一种方法
6、能直接由参数方程算出它所确定的函数的导数. 设x=j(t)具有单调连续反函数t=j-1(x), 且此反函数能与函数y=y(t)构成复合函数y=yj-1(x) , 若x=j(t)和y=y(t)都可导, 则 , 即 或. 若x=j(t)和y=y(t)都可导, 则. 例7. 求椭圆在相应于点处的切线方程. 解: . 所求切线的斜率为. 切点的坐标为, . 切线方程为, 即 bx+ayab =0. 例8抛射体运动轨迹的参数方程为, 求抛射体在时刻t的运动速度的大小和方向. y=v2t -g t 2 解: 先求速度的大小. 速度的水平分量与铅直分量分别为 x (t)=v1, y(t)=v2-gt, 所以
7、抛射体在时刻t的运动速度的大小为 . 再求速度的方向, 设a是切线的倾角, 则轨道的切线方向为 . 已知x=j(t), y=y(t), 如何求二阶导数y? 由x=j(t), , . 例9计算由摆线的参数方程所确定的函数y=f(x)的二阶导数. 解: (t2np, n为整数). (t2np, n为整数). 三、相关变化率 设x=x(t)及y=y(t)都是可导函数, 而变量x与y间存在某种关系, 从而变化率与间也存在一定关系. 这两个相互依赖的变化率称为相关变化率. 相关变化率问题就是研究这两个变化率之间的关系, 以便从其中一个变化率求出另一个变化率. 例10一气球从离开观察员500f处离地面铅直上升, 其速度为140m/min(分). 当气球高度为500m时, 观察员视线的仰角增加率是多少? 解 设气球上升t(秒)后, 其高度为h, 观察员视线的仰角为a, 则. 其中a及h都是时间t的函数. 上式两边对t求导, 得. 已知(米/秒). 又当h=500(米)时, tan a=1, sec2 a=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年江西省赣州市会昌中学宁师中学物理高一下期末监测试题含解析
- 山东省枣庄市滕州市滕州市第一中学2025年物理高一下期末统考模拟试题含解析
- 2025届湖北省襄阳第四中学物理高一下期末综合测试模拟试题含解析
- 2025届上海市静安区风华中学物理高一下期末预测试题含解析
- 宣传上课课件
- 2025届山西省朔州市物理高二第二学期期末学业水平测试试题含解析
- 宠物护理与美容课件
- 宠物X光片检查技术课件
- 2025搬家合同范本大全:家具搬运与包装服务细则
- 2025版电商平台家居用品促销活动合作协议
- 处方管理办法培训演示
- 第二章微生物药物生物合成与调控第一节(发酵工艺学夏焕章第三)3
- 兴隆百货集团企业文化
- YY/T 1533-2017全自动时间分辨荧光免疫分析仪
- JJF 1105-2018触针式表面粗糙度测量仪校准规范
- GB/T 4854.3-2022声学校准测听设备的基准零级第3部分:骨振器纯音基准等效阈振动力级
- GB/T 29602-2013固体饮料
- GB/T 24015-2003环境管理现场和组织的环境评价(EASO)
- GB/T 14486-2008塑料模塑件尺寸公差
- 广东省推进粤港澳大湾区国际科技创新中心建设重点任务实施方案
- 小学升初中入学测试宁外入学试卷
评论
0/150
提交评论