




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 12 Solutions Manual Problem Solutions 185 Chapter 12 Problem Solutions 12.1 (a) I V V D GS t = () L N M O Q P 10 2.1 15 exp For VV GS = 05 ., ID= ()() L N M O Q P 10 05 2.1 00259 15 exp . . IxA D = 9.83 10 12 For VV GS = 07 .,
2、IxA D = 388 10 10 . For VV GS = 09 ., IxA D = 154 10 8 . Then the total current is: II TotalD =10 6 b g For VV GS = 05 ., IA Total = 9.83 For VV GS = 07 ., ImA Total = 0388. For VV GS = 09 ., ImA Total = 154 . (b) Power: PIV TotalDD = Then For VV GS = 05 ., PW= 49.2 For VV GS = 07 ., PmW= 194. For V
3、V GS = 09 ., PmW= 77 12.2 We have L eN VsatV a fpDSDS = +() 2 +() fpDS Vsat where fpt a i V N nx = F H G I K J () F H G I K J ln.ln . 00259 10 15 10 16 10 or fp V= 0347. We find 2 2 117 885 10 16 1010 14 1916 1 2 = ()L N M O Q P eN x x a . . / bg bgb g = 0360 1 2 ./ / m V We have VsatVV DSGST ()= (a
4、) For VVVsatV GSDS =()54.25 Then L =+03600347503474.25. or Lm= 00606. If L is 10%of L, then Lm= 0606. (b) For VVVVVsatV DSGSDS =()52125,. Then L =+0360034750347125. or Lm= 0377. Now if L is 10% of L, then Lm= 377. 12.3 L eN VsatV a fpDSDS = +() 2 +() fpDS Vsat where fpt a i V N n x x = F H G I K J (
5、) F H G I K J ln.ln . 00259 4 10 15 10 16 10 or fp V= 0383. and x eN dT fp a = L N M O Q P 4 1 2 / = ()()L N M O Q P 4 117 885 100383 16 104 10 14 1916 1 2 . . / x xx bg bgbg or xm dT = 0157. Then =()QeN x SDadT max Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 12 Solution
6、s Manual Problem Solutions 186 = 16 104 100157 10 19164 .xxxbgbgbg or =() QC cm SD max/10 72 Now VQQ t TSDSS ox ox msfp = +() F H G I K J maxaf2 so that V xxx x T = () 1016 103 10400 10 39 885 10 719108 14 . . bgbgbg bg + +()02 0383. or VV T = 187. Now VsatVVV DSGST ()=5187313. We find 2 2 117 885 1
7、0 16 104 10 14 1916 1 2 = ()L N M O Q P eN x xx a . . / bg bgbg = 180 10 5 .x Now Lx VDS=+ 180 100383313 5 . +0383313. or LxVDS=+ 180 1035133513 5 . We obtain VDS Lm() 0 1 2 3 4 5 0 0.0451 0.0853 0.122 0.156 0.188 12.4 Computer plot 12.5 Plot 12.6 Plot 12.7 (a) Assume VsatV DS( )= 1, We have sat DS
8、Vsat L = () We find Lm() satVcm/() 3 1 05 . 025. 013. 333 10 3 .x 10 4 2 10 4 x 4 10 4 x 7.69 10 4 x (b) Assume ncmVs=500 2 /, we have v nsat = Then For Lm= 3, vxcm s= 167 10 6 ./ For Lm= 1, vxcm s= 5 10 6 / For Lm 05 ., vcm s 10 7 / 12.8 We have =() IL LLI DD 1 We may write g I V L LLI L V O D DS D
9、 DS = = () () ()F H G I K J 1 2 = () ()L LL I L V D DS 2 We have L eN VVsat a fpDSfpDS = +() 2 We find = + ()L VeNV DSa fpDS 21 2 (a) For VVVV GSDS =21, , and VsatVVV DSGST ()=20812. Also VVsatVV DSDSDS =+=+=()1212.2. and fp x x V=() F H G I K J 00259 3 10 15 10 0376 16 10 .ln . . Now Semiconductor
10、Physics and Devices: Basic Principles, 3rd edition Chapter 12 Solutions Manual Problem Solutions 187 2 2 117 885 10 16 103 10 14 1916 1 2 = ()L N M O Q P eN x xx a . . / bg bgbg = 02077 1 2 ./ / m V We find L =+0207703762.2037612. = 00726.m Then = + ()L VDS 02077 2 1 03762.2 . . = 00647./m V From th
11、e previous problem, ImALm D =0482., Then gx O = () () 2 200726 048 1000647 2 3 . .bg or gxS O = 167 10 5 . so that r g k O O = 1 59.8 (b) If Lm= 1, then from the previous problem, we would have ImA D = 096., so that gx O = () () 1 100726 096 1000647 2 3 . .bg or gxS O = 7.22 10 5 so that r g k O O =
12、 1 138 . 12.9 (a) Isat WC L VV D nox GST ()= 2 2 af = F H I K( ) 10 2 500 69 101 8 2 . xVGSb ga f or IsatVmA DGS ()()=01731 2 .af and IsatVmA DGS ()()=01731 1 2 . / af (b) Let effO eff C = F H G I K J 1 3/ Where OcmVs=1000 2 / and CxVcm= 2.5 10 4 /. Let eff GS ox V t = We find C t t C x x ox ox ox o
13、x ox ox = = = () 39 885 10 69 10 14 8 . . bg or tA ox = 500 Then VGS eff eff Isat D( ) 1 2 3 4 5 - 4E5 6E5 8E5 10E5 - 397 347 315 292 0 0.370 0.692 0.989 1.27 (c) The slope of the variable mobility curve is not constant, but is continually decreasing. 12.10 Plot 12.11 VV Q C TFB SD ox fp =+ + ()max
14、2 We find fpt a i V N n x x = F H G I K J () F H G I K J ln.ln . 00259 5 10 15 10 16 10 or fp V= 0389. and x eN dT fp a = L N M O Q P 4 1 2 / = ()()L N M O Q P 4 117 885 100389 16 105 10 14 1916 1 2 . . / x xx bg bgbg or xm dT = 0142. Now Semiconductor Physics and Devices: Basic Principles, 3rd edit
15、ion Chapter 12 Solutions Manual Problem Solutions 188 =()QeN x SDadT max = 16 105 100142 10 19164 .xxxbgbgbg or =() QxC cm SD max./114 10 72 Also C t x x x ox ox ox Fcm= = () 39 885 10 400 10 863 10 14 8 82 . ./ bg Then V x x T = + ()112 114 10 863 10 2 0389 7 8 . . . . or VV T = +090. (a) I WC L VV
16、 VV D nox GSTDSDS = 2 2 2 af and VsatVV DSGST ()= We have Ix D =F H I KFH I K( ) 20 2 1 2 400 863 10 8 .bg 2 2 VV VV GSTDSDS af or IVV VVmA DGSTDSDS =()0173 2 2 .af For VVsatVVV DSDSGST =()1, IsatmA D( )= 0173. For VVsatVVV DSDSGST =()2, IsatmA D( )= 0692. (b) For VVcmVs DSn =125400 2 .,/. The curve
17、 for VVV GST = 1 is unchanged. For VVV GST = 2 and 0125VV DS ., the curve in unchanged. For VV DS 125., the current is constant at ImA D =( )() ()0173 2 2 1251250595 2 . When velocity saturation occurs, VsatV DS( )= 125. for the case of VVV GST = 2. 12.12 Plot 12.13 (a) Non-saturation region IC W L
18、VV VV DnoxGSTDSDS = F H I K 1 2 2 2 af We have C t C k ox ox ox ox = and WkWLkL, also VkVVkV GSGSDSDS , So I C k kW kL kVVkVkV Dn ox GSTDSDS = F H I KFH I K 1 2 2 2 afa f Then IkI DD In the saturation region I C k kW kL kVV Dn ox GST = F H I KFH I K 1 2 2 Then IkI DD (b) PI VkIkVk P DDDDDD =a faf 2
19、12.14 IsatWCVVv DoxGSTsat ()=af ()F H I K kW C k kVVv ox GSTsat af or IsatkIsat DD ()() 12.15 (a) (i) IK VV DnGST =()()af 22 01 508. or ImA D = 1764. (ii) ID= F H I K ()( ) 01 06 06 508 2 . . . or ImA D = 0807. (b) (i) P =()( )1764 5. PmW= 882. (ii) P =()()( )080706 5. PmW= 2.42 Semiconductor Physic
20、s and Devices: Basic Principles, 3rd edition Chapter 12 Solutions Manual Problem Solutions 189 (c) Current: Ratio = 0807 1764 0457 . . . Power: Ratio = 2.42 882 0274 . . 12.16 V eN x C r L x r T adT ox j dT j = + L N M O Q P R S T U V W 1 2 1 Now fpt a i V N nx = F H G I K J () F H G I K J ln.ln . 0
21、0259 10 15 10 16 10 or fp V= 0347. and x eN dT fp a = L N M O Q P 4 1 2 / = ()()L N M O Q P 4 117 885 100347 16 1010 14 1916 1 2 . . / x x bg bgb g or xm dT = 030. Also C t x x ox ox ox = = () 39 885 10 450 10 14 8 .bg = 7.67 10 82 xFcm/ Then V xx x T = 16 101003 10 7.67 10 19164 8 .bgb gbg + ()L N
22、M O Q P R S T U V W 03 1 1 2 03 03 1 . . or VV T = 0137. 12.17 V eN x C r L x r T adT ox j dT j = + L N M O Q P R S T U V W 1 2 1 Now fp x x V=() F H G I K J 00259 3 10 15 10 0376 16 10 .ln . . and x eN dT fp a = L N M O Q P 4 1 2 / = ()()L N M O Q P 4 117 885 100376 16 103 10 14 1916 1 2 . . / x xx
23、 bg bgbg or xm dT = 0180. Also C t x x ox ox ox = = () 39 885 10 800 10 14 8 .bg or CxFcm ox = 4.31 10 82 / Then V xxx x T = = 020 16 103 10018 10 4.31 10 19164 8 . .bgbgbg + ()L N M O Q P R S T U V W 06 1 2 018 06 1 . .L or = = 020 0319 . . L which yields Lm= 159. 12.18 We have = +()LLab and from t
24、he geometry (1) arxrx jdTjdS +=+bgbg 2 2 2 and (2) brxrx jdTjdD +=+bgbg 2 2 2 From (1), arrxx jjdSdT +=+bg bg 22 2 so that arxxr jdSdTj =+bg 2 2 which can be written as ar x r x r j dS j dT j =+ F H G I K J F H G I K J L N M M O Q P P 11 22 or Semiconductor Physics and Devices: Basic Principles, 3rd
25、 edition Chapter 12 Solutions Manual Problem Solutions 190 ar x r x r x r j dS j dS j dT j =+ F H G I K J F H G I K J L N M M O Q P P 1 2 1 22 Define 2 22 2 = xx r dSdT j We can then write ar x r j dS j =+ L N M O Q P 1 2 1 2 Similarly from (2), we will have br x r j dD j =+ L N M O Q P 1 2 1 2 wher
26、e 2 22 2 = xx r dDdT j The average bulk charge in the trapezoid (per unit area) is = +F H I K QLeN x LL BadT 2 or = +F H I K QeN x LL L BadT 2 We can write LL L L LL Lab + =+ =+() 2 1 22 1 2 1 2 which is = +() 1 2 ab L Then = +()L NM O QP QeN x ab L BadT 1 2 Now QB replaces ()QSDmax in the threshold
27、 equation. Then V Q C Q C T B ox SD ox = ()max = + ()L NM O QP eN x C ab L eN x C adT ox adT ox 1 2 or V eN x C ab L T adT ox = +() 2 Then substituting, we obtain V eN x C r L x r T adT ox j dS j = + L N M O Q P R S T 2 1 2 1 2 + L N M O Q PUV W 1 2 1 2 x r dD j Note that if xxx dSdDdT =, then = 0 a
28、nd the expression for VT reduces to that given in the text. 12.19 We have = L0 , so Equation (12.25) becomes LL L L L r L x r j dT j + =+ L N M O Q P R S T U V W 22 1 2 11 2 1 or r L x r j dT j 1 2 1 1 2 += L N M O Q P Then Equation (12.26) is = F H I K QeN x BadT 1 2 The change in the threshold vol
29、tage is V Q C Q C T B ox SD ox = ()max or V eN x C eN x C T adT ox adT ox = 1 2a faf af or V eN x C T adT ox = F H I K 1 2 af 12.20 Computer plot 12.21 Computer plot 12.22 V eN x C r L x r T adT ox j dT j = + L N M O Q P R S T U V W 1 2 1 Semiconductor Physics and Devices: Basic Principles, 3rd edit
30、ion Chapter 12 Solutions Manual Problem Solutions 191 + F H I K F H I K L N M O Q P R S T U V W e N k kx C k kr kL kx kr a dT ox j dT j a f 1 2 1 or Vk V TT = 12.23 V eN x C x W T adT ox dT = F H I K We find fp x V=() F H G I K J 00259 10 15 10 0347 16 10 .ln . . and x eN dT fp a = L N M O Q P 4 1 2
31、 / = ()()L N M O Q P 4 117 885 100347 16 1010 14 1916 1 2 . . / x x bg bgb g or xm dT = 030. Also C t x x ox ox ox = = () 39 885 10 450 10 14 8 .bg or CxFcm ox = 7.67 10 82 / Then V xx x T = 16 101003 10 7.67 10 19164 8 .bgb gbg L N M O Q P 203 10 2.5 10 4 4 a fbg. x x or VV T = +0118. 12.24 Additio
32、nal bulk charge due to the ends: QeN LxeN Lxx BadTadTdT = F H I K 1 2 2 2 a f where = 1. Then V eN x C W T adT ox = 2 We find fp x x V=() F H G I K J 00259 3 10 15 10 0376 16 10 .ln . . and x eN dT fp a = L N M O Q P 4 1 2 / = ()()L N M O Q P 4 117 885 100376 16 103 10 14 1916 1 2 . . / x xx bg bgbg
33、 or xm dT = 0180. Also C t x x ox ox ox = = () 39 885 10 800 10 14 8 .bg or CxFcm ox = 4.31 10 82 / Now, we can write W eN x CV adT oxT = 2 a f = () 16 103 10018 10 4.31 10025 19164 2 8 . . xxx x bgbgbg bg or Wm= 144. 12.25 Computer plot 12.26 V eN x C x W T adT ox dT = F H I K Assume that is a cons
34、tant F H I K F H I K F H I K e N k kx C k kx kW a dT ox dT a f or Vk V TT = 12.27 (a) Vxtxx BDox = 6 106 10250 10 668 bgbgbg or Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 12 Solutions Manual Problem Solutions 192 VV BD = 15 (b) With a safety factor of 3, VBD= 1 3 15 VV
35、BD = 5 12.28 We want VV G = 20. With a safety factor of 3, then VV BD = 60, so that 606 10 6 =xtoxbg tA ox = 1000 12.29 Snapback breakdown means M = 1, where =() F H I K 018 3 10 10 9 .log I x D and M V V CE BD m = F H G I K J 1 1 Let VVm BD =153,. Now when M VCE = F H I K 1 1 15 3 we can write this
36、 as 1 15 151 3 3 = F H I K V V CE CE Now ID VCE E-8 E-7 E-6 E-5 E-4 E-3 0.0941 0.274 0.454 0.634 0.814 0.994 14.5 13.5 12.3 10.7 8.6 2.7 12.30 One Debye length is L kT e eN D a = L N M O Q P af 1 2/ = ()()L N M O Q P 117 885 1000259 16 1010 14 1916 1 2 . . / x x bg bgb g or Lxcm D = 4.09 10 6 Six De
37、bye lengths: 6 4.09 100246 6 xm =bg. From Example 12.4, we have xm dO = 0336., which is the zero-biased source-substrate junction width. At near punch-through, we will have xLxL dODd +=6 where xd is the reverse-biased drain-substrate junction width. Now 03360246120618.+=xxm dd at near punch-through.
38、 We have x VV eN d biDS a = +L N M O Q P 2 1 2 af / or VV x eN biDS da += 2 2 = () 0618 1016 1010 2 117 885 10 4 2 1916 14 . . xx x bgbgb g bg which yields VVV biDS += 2.95 From Example 12.4, we have VV bi = 0874., so that VV DS = 2.08 which is the near punch-through voltage. The ideal punch-through
39、 voltage was VV DS = 4.9 12.31 V x x V bi =() L N M M O Q P P 00259 103 10 15 10 0902 1916 10 2 .ln . . b gbg bg The zero-biased source-substrate junction width: x V eN dO bi a = L N M O Q P 2 1 2/ = ()()L N M O Q P 2 117 885 100902 16 103 10 14 1916 1 2 . . / x xx bg bgbg or xm dO = 0197. The Debye
40、 length is Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 12 Solutions Manual Problem Solutions 193 L kT e eN D a = L N M O Q P af 1 2/ = ()()L N M O Q P 117 885 1000259 16 103 10 14 1916 1 2 . . / x xx bg bgbg or Lxcm D = 2.36 10 6 so that 66 2.36 100142 6 Lxm D = bg. Now
41、xLxL dODd +=6 We have for VV DS = 5, x VV eN d biDS a = +L N M O Q P 2 1 2 af / = +()()L N M O Q P 2 117 885 1009025 16 103 10 14 1916 1 2 . . / x xx bg bgbg or xm d = 0505. Then L =+019701420505. or Lm= 0844. 12.32 With a source-to-substrate voltage of 2 volts, x VV eN dO biSB a = +L N M O Q P 2 1
42、2 af / = +()()L N M O Q P 2 117 885 1009022 16 103 10 14 1916 1 2 . . / x xx bg bgbg or xm dO = 0354. We have 60142Lm D = . from the previous problem. Now x VVV eN d biDSSB a = +L N M O Q P 2 1 2 af / = +()()L N M O Q P 2 117 885 10090252 16 103 10 14 1916 1 2 . . / x xx bg bgbg or xm d = 0584. Then
43、 LxLx dODd =+6 =+035401420584. or Lm= 108. 12.33 (a) fp x x V=() F H G I K J 00259 2 10 15 10 0306 15 10 .ln . . and ms g fp E e = += + F H G I K J F H I K 2 112 2 0306 . . or msV= 0866. Also x eN dT fp a = L N M O Q P 4 1 2 / = ()()L N M O Q P 4 117 885 100306 16 102 10 14 1915 1 2 . . / x xx bg bg
44、bg or xm dT = 0629. Now =()QeN x SDadT max = 16 102 100629 10 19154 .xxxbgbgbg or =() QxC cm SD max/2.01 10 82 We have = = QxxxC cm SS 2 1016 1032 10 111982 bgbg./ Then VQQ t TSDSS ox ox msfp = +() F H G I K J maxaf2 = () 2.01 1032 10650 10 39 885 10 888 14 xxx x . . bgbg bg +()08662 0306. which yie
45、lds VV T = 0478. (b) We need a shift in threshold voltage in the positive direction, which means we must add acceptor atoms. We need VV T = + =()0800478128. Then Semiconductor Physics and Devices: Basic Principles, 3rd edition Chapter 12 Solutions Manual Problem Solutions 194 D VC e x xx I Tox = ()(
46、) a fbg bgbg 128 39 885 10 16 10650 10 14 198 . . or Dxcm I = 4.25 10 112 12.34 (a) fn x V=() F H G I K J 00259 10 15 10 0347 16 10 .ln . . and msms g fn E e = + F H G I K J 2 =+()323250560347. or msV= 0263. Also x eN dT fn d = L N M O Q P 4 1 2 / = ()()L N M O Q P 4 117 885 100347 16 1010 14 1916 1
47、 2 . . / x x bg bgb g or xm dT = 030. Now =()QeN x SDddT max = 16 1010030 10 19164 .xxbgb gbg or =() QxC cm SD max/4.8 10 82 We have = = QxxxC cm SS 5 1016 108 10 111982 bgbg./ Now VQQ t TSDSS ox ox msfn = + +() F H G I K J maxaf2 = + () 4.8 108 10750 10 39 885 10 888 14 xxx x bgbg bg. ()02632 0347.
48、 which becomes VV T = 374. (b) We want VV T = 050. Need to shift VT in the positive direction which means we need to add acceptor atoms. So VV T = =()050374324. Now D VC e x xx I Tox = ()() a fbg bgbg 32439 885 10 16 10750 10 14 198 . . or Dxcm I = 9.32 10 112 12.35 (a) fp x V=() F H G I K J 00259 10 15 10 0288 15 10 .ln . . and x eN dT fp a = L N M O Q P 4 1 2 / = 4 117 885 100288 16 1010 14 1915 1 2 . . / ()()L N M O Q P x x bg bgb g or xm dT = 0863. Now
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025按揭车辆转让及车辆代购代理合同范本
- 2025版智能交通设施建设施工协议
- 二零二五年度商业秘密保护协议范本规范
- 二零二五年度智慧城市建设合同条款变更补充协议
- 二零二五年度自然人绿色环保项目投资合同
- 2025版标准知识产权质押合同范本正规范本知识产权融资新通道
- 2025版老旧小区拆墙工程责任免除协议范本
- 二零二五年度合作商务写字楼租赁合作协议
- 2025版安置房室内水电安装及维修保养服务合同
- 二零二五年度安全防范技术合作聘用协议
- 斜视弱视学试题及答案
- MT/T 1222-2024液压支架再制造工程设计指南
- 2025-2030中国锻条行业市场现状分析及竞争格局与投资发展研究报告
- GB/T 30134-2025冷库管理规范
- 《成人糖尿病患者的高血糖危象:共识报告》-学习与应用
- 遵义社工面试真题及答案
- 金属材料的断裂和断裂韧性
- 脑卒中急救培训课件
- 2025年上海中考复习必背英语考纲词汇表默写(汉英互译)
- 《中国脑卒中防治报告(2023)》
- 集团公司企业各岗位廉洁风险点防控表格(41份)
评论
0/150
提交评论