




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.概率与二项式1两种计数原理分类计数原理和分步计数原理2排列(1)排列的定义;(2)排列数公式:An(n1)(n2)(nm1)(mn,m,nN*)3组合(1)组合的定义;(2)组合数公式:C(mn,m,nN*)(3)组合数性质:CC;CCC.4概率、随机变量及其分布(1)离散型随机变量及其概率分布的表示:离散型随机变量:所有取值可以一一列出的随机变量叫做离散型随机变量;离散型随机变量概率分布的表示法:概率分布列和概率分布表;性质:1pi0(i1,2,3,n);2p1p2p3pn1;(2)特殊的概率分布列:01分布(两点分布)符号表示:X01分布;超几何分布:1符号表示:XH(n,M,N);2概
2、率分布列:XH(r;n,M,N)P(Xr);二项分布(又叫独立重复试验,波努利试验):1符号表示:XB(n,p);2概率分布列:P(Xk)Cpk(1p)nk.注意:P(X0)P(X1)P(X2)P(Xr)P(Xn)1.5.互斥事件有一个发生的概率若A、B是互斥事件,则P(AB)P(A)P(B),P(A)P(A)1.相互独立事件与n次独立重复试验(1)若 A1,A2,An是相互独立事件,则P(A1A2An)P(A1)P(A2)P(An)离散型随机变量的分布列、期望与方差(1)主干知识:随机变量的可能取值,分布列,期望,方差,二项分布,超几何分布,正态分布(2)基本公式:E()x1p1x2p2xn
3、pn;D()(x1E()2p1(x2E()2p2(xnE()2pn;E(ab)aE()b,D(ab)a2D();6. 二项分布:B(n,p),则P(k)Cpk(1p)nk,E()np,D()np(1p)7.正态分布:(1)若X服从参数为和2的正态分布,则可表示为XN(,2)(2)N(,2)的分布密度曲线关于直线x对称,该曲线与x轴所围成的图形的面积为1.(3)当XN(,2)时,0.683P(X),0.954P(2X2),0.997P(3X3)例题随机变量服从正态分布N(40,2),若P(25)0.2,则P(2540)为(). A.0.2 B.0.3 C.0.4 D.0.5【例1】 (2012陕
4、西)某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:办理业务所需的时间/分12345频率0.10.40.30.10.1从第一个顾客开始办理业务时计时(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望解设Y表示顾客办理业务所需的时间,用频率估计概率,得Y的分布列如下:Y12345P0.10.40.30.10.1(1)A表示事件“第三个顾客恰好等待4分钟开始办理业务”,则事件A对应三种情形:第一个顾客办理业务所需的时间为1分钟,且第二个顾客办理业务所需
5、的时间为3分钟;第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;第一个和第二个顾客办理业务所需的时间均为2分钟所以P(A)P(Y1)P(Y3)P(Y3)P(Y1)P(Y2)P(Y2)0.10.30.30.10.40.40.22.(2)X的所有可能取值为0,1,2.X0对应第一个顾客办理业务所需的时间超过2分钟,所以P(X0)P(Y2)0.5;X2对应两个顾客办理业务所需的时间均为1分钟,所以P(X2)P(Y1)P(Y1)0.10.10.01;P(X1)1P(X0)P(X2)0.49;所以X的分布列为X012P0.50.490.01E(X)00.510.4920.0
6、10.51.【例2】 (2012天津)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记|XY|.求随机变量的分布列与数学期望E()解依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的概率为.设“这4个人中恰有i人去参加甲游戏”为事件Ai(i0,1,2,3,4),则
7、P(Ai)Ci4i.(1)这4个人中恰有2人去参加甲游戏的概率P(A2)C22.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B,则BA3A4.由于A3与A4互斥,故P(B)P(A3)P(A4)C3C4.所以,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为.(3)的所有可能取值为0,2,4.由于A1与A3互斥,A0与A4互斥,故P(0)P(A2),P(2)P(A1)P(A3),P(4)P(A0)P(A4).所以的分布列是024P的期望E()024.与方差【例3】 (2012新课标全国)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售
8、如果当天卖不完,剩下的玫瑰花作垃圾处理(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,nN)的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n14151617181920频数10201616151310以100天记录的各需求量的频率作为各需求量发生的概率()若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;()若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由解(1)当日需求量n16时,利润y80.当日需求量n16时,利润y10n80.所以y关于n
9、的函数解析式为y(nN)(2)()X可能的取值为60,70,80,并且P(X60)0.1,P(X70)0.2,P(X80)0.7.X607080P0.10.20.7X的分布列为X的数学期望为E(X)600.1700.2800.776.X的方差为D(X)(6076)20.1(7076)20.2(8076)20.744.()答案一:花店一天应购进16枝玫瑰花理由如下:若花店一天购进17枝玫瑰花,Y表示当天的利润(单位:元),那么Y的分布列为Y55657585P0.10.20.160.54Y的数学期望为E(Y)550.1650.2750.16850.5476.4.Y的方差为D(Y)(5576.4)2
10、0.1(6576.4)20.2(7576.4)20.16(8576.4)20.54112.04.由以上的计算结果可以看出,D(X)D(Y),即购进16枝玫瑰花时利润波动相对较小另外,虽然E(X)E(Y),但两者相差不大故花店一天应购进16枝玫瑰花答案二:花店一天应购进17枝玫瑰花理由如下:若花店一天购进17枝玫瑰花,Y表示当天的利润(单位:元),那么Y的分布列为Y55657585P0.10.20.160.54Y的数学期望为E(Y)550.1650.2750.16850.5476.4.由以上的计算结果可以看出,E(X)E(Y),即购进17枝玫瑰花时的平均利润大于购进16枝时的平均利润故花店一天应购进17枝玫瑰花二项式定理1 知识精讲:(1)二项式定理:()其通项是 (r=0,1,2,n),知4求1,如:亦可写成:()特别地:()其中,二项式系数。而系数是字母前的常数。(2)二项展开式系数的性质:对称性,在二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即增减性与最大值:在二项式展开式中,二项式系数先增后减,且在中间取得最大值。如果二项式的幂指数是偶数,中间一项的二项式系数最大,即偶数:;如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大,即。所有二项式系数的和用赋值法可以证明等于即;奇数项的二项式系数和与偶数项的二
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年西安石油大学辅导员招聘考前自测高频考点模拟试题带答案详解
- 小学生简笔画课件
- 2025年企业人力资源管理师(五级)技能操作试卷:真题解析含答案
- 小学生科目课件
- 绿色建筑先锋:2025年被动式超低能耗建筑技术原理与推广难点解析报告
- 快消品包装行业2025年可持续发展目标与市场趋势研究报告
- 医药企业研发外包(CRO)模式下的临床试验数据共享与隐私保护报告
- 2025年工业互联网平台传感器网络自组网技术在智能安防领域的应用报告
- 企业在线监测管理办法
- 企业人力档案管理办法
- 2025贵州省水利投资(集团)有限责任公司招聘84人笔试备考题库附答案详解(模拟题)
- 驻场运维合同协议书
- 2025年电动叉车项目立项申请报告范文
- T/CGAS 026.1-2023瓶装液化石油气管理规范第1部分:安全管理
- 2025年数字化营销考试试卷及答案的建议
- 陕投集团招聘笔试题库2025
- 辽宁省文体旅集团所属两家企业招聘笔试题库2025
- DB3205T 1174-2025学龄儿童青少年视力筛查及建档规范
- 公考宪法知识试题及答案
- 宝马购车合同协议
- 安全培训合同协议
评论
0/150
提交评论