高中数学必修2知识点加例题加课后习题_第1页
高中数学必修2知识点加例题加课后习题_第2页
高中数学必修2知识点加例题加课后习题_第3页
高中数学必修2知识点加例题加课后习题_第4页
高中数学必修2知识点加例题加课后习题_第5页
已阅读5页,还剩66页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高中数学必修二第1章 空间几何体1.1空间几何体的结构1、 棱柱 定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。2、 棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母

2、,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。3、 棱台 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如四棱台ABCDABCD几何特征:上下底面是相似的平行多边形 侧面是梯形 侧棱交于原棱锥的顶点4、 圆柱 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形。5、 圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成

3、的曲面所围成的几何体几何特征:底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形。6、圆台定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形。球体定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:球的截面是圆;球面上任意一点到球心的距离等于半径。空间几何体的结构特征:面(侧面、上底面、下底面)、棱、顶点、轴例1 下列命题中错误的是( )A圆柱的轴截面是过母线的截面中面积最大的一个B圆锥的轴截面是所有过顶点的截面中面积最大的一个C圆台的所有平行于底面的截面都是圆D圆锥所有的轴截面是全等

4、的等腰三角形【解析】圆锥的母线长相长,设为l,若圆锥截面三角形顶角为,圆锥轴截面三角形顶角为,则0. 当90时,截面面积S = . 当90180时.截面面积S,故选B.例2 根据下列对几何体结构特征的描述,说出几何体的名称. (1)由八个面围成,其中两个面是互相平行且全等的正六边形,其它各面都是矩形;(2)一个等腰梯形绕着两底边中点的连线所在的直线旋转180形成的封闭曲面所围成的图形. 【分析】要判断几何体的类型,首先应熟练掌握各类几何体的结构特征. 图2图1【解析】(1)如图1,该几何体满足有两个面平行,其余六个面都是矩形,可使每相邻两个面的公共边都相互平行,故该几何体是六棱柱. (2)如图

5、2,等腰梯形两底边中点的连线将梯形平分为两个直角梯形,每个直角梯形旋转180形成半个圆台,故该几何体为圆台. 点评:对于不规则的平面图形绕轴旋转问题,要对原平面图形作适当的分割,再根据圆柱、圆 锥、圆台的结构特征进行判断. 例3 把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1:4,母线长是10cm,求圆锥的母线长. 【分析】 画出圆锥的轴截面,转化为平面问题求解. 图418 【解析】 设圆锥的母线长为ycm,圆台上、下底面半径分别是xcm 、4xcm.作圆锥的轴截面如图. 在RtSOA 中,OAOA,SASA= OAOA,即(y-10)y=x4x. y=13.圆锥的母线长为13cm【点评

6、】圆柱、圆锥、圆台可以看做是分别以矩形的一边、直角三角形的一直角边、直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而成的曲面所围成的几何体,其轴截面分别是矩形、等腰三角形、等腰梯形,这些轴截面集中反映了旋转体的各主要元素,处理旋转体的有关问题一般要作出轴截面. 例4 已知球的外切圆台上、下底面的半径分别为r,R,求球的半径.【解析】圆台轴截面为等腰梯形,与球的大圆相切,由此得梯形腰长为R + r,梯形的高即球的直径为=2,所以,球的半径为.圆锥底面半径为1cm,高为cm,其中有一个内接正方体,求这个内接正方体的棱长.EC1OD1=1FDCS【解析】锥的轴截面SEF,正方体对角面CDD1

7、C1,如图所示.设正方体棱长x,则CC1 = x,C1D1 =x.作SOEF于O,则SO =,OE = 1,ECC1EOS,=,即=.x=(cm),即内接正方体棱长为cm.课后练习一、选择题1.用一个平面去截一个四棱锥,截面形状不可能的是()A. 四边形B. 三角形C. 五边形D. 六边形2.一个棱长为62的正四面体纸盒内放一个正方体,若正方体可以在纸盒内任意转动,则正方体棱长的最大值为()A. 1B. 2C. 2D. 33.下列命题中,错误的是()A. 圆锥所有的轴截面是全等的等腰三角形B. 圆柱的轴截面是过母线的截面中面积最大的一个C. 圆锥的轴截面是所有过顶点的界面中面积最大的一个D.

8、当球心到平面的距离小于球面半径时,球面与平面的交线总是一个圆4.等腰三角形ABC绕底边上的中线AD所在的直线旋转所得的几何体是()A. 圆台B. 圆锥C. 圆柱D. 球5.下列几何体是组合体的是()A. B. C. D. 6.若一个圆锥的侧面展开图是面积为2的半圆面,则该圆锥的母线与轴所成的角为()A. 30B. 45C. 60D. 757.在所有棱长都相等的三棱锥ABCD中,P、Q分别是AD、BC的中点,点R在平面ABC内运动,若直线PQ与直线DR成30角.则R在平面ABC内的轨迹是()A. 双曲线B. 椭圆C. 圆D. 直线8.如图,以等腰直角三角形斜边BC上的高AD为折痕,把ABD和AC

9、D折成互相垂直的两个平面后,某学生得出下列四个结论:BDAC0;BAC=60;三棱锥DABC是正三棱锥;平面ADC的法向量和平面ABC的法向量互相垂直其中正确的是()A. B. C. D. 9.如图,将无盖正方体纸盒展开,直线AB,CD在原正方体中的位置关系是()A. 平行B. 相交成60C. 相交且垂直D. 异面直线10.以下命题中真命题的序号是() 若棱柱被一平面所截,则分成的两部分不一定是棱柱;有两个面平行,其余各面都是梯形的几何体叫棱台;用一个平面去截圆锥,底面和截面之间的部分组成的几何体叫圆台;有两个面平行,其余各面都是平行四边形的几何体叫棱柱A. B. C. D. 在四面体PABC

10、的四个面中,是直角三角形的面至多有()个A. 0个B. 1个C. 3个D. 4个11.一个骰子由16六个数字组成,请你根据图中三种状态所显示的数字,推出“?”处的数字是() A. 6B. 3C. 1D. 212.一个直角三角形绕斜边旋转360形成的空间几何体为()A. 一个圆锥B. 一个圆锥和一个圆柱C. 两个圆锥D. 一个圆锥和一个圆台13.一个十二面体共有8个顶点,其中2个顶点处各有6条棱,其它顶点处都有相同的棱,则其它顶点处的棱数为_14.两个相同的正四棱锥组成如图所示的几何体,可放入棱长为1的正方体内,使正四棱锥的底面ABCD与正方体的某一个平面平行,且各顶点均在正方体的面上,则这样的

11、几何体体积的可能值有_个15.在长方体ABCDA1B1C1D1的六个面中,与棱AB平行的面共有_ 个.16.圆台的一个底面周长是另一个底面周长的3倍,它的轴截面面积是392cm2,母线与轴的夹角是45,求这个圆台的高、母线和两底面的半径17.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为h1,h2,h3,求h1:h2:h3的值1.2空间几何体的三视图和直观图1、 中心投影与平行投影中心投影:把光由一点向外散射形成的投影叫做中心投影。平行投影:在一束平行光照射下形成的投

12、影叫做平行投影。2、 三视图 正视图:从前往后 侧视图:从左往右 俯视图:从上往下画三视图的原则:长对齐、高对齐、宽相等注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。例1 画出下列空间几何体的三视图如图是截去一角的长方体,画出它的三视图.【解析】物体三个视图的构成都是矩形,长方体截角后,截面是一个三角形,在每个视图中反映为不同的三角形,三视图为图2.例2 由5个小立方块搭成的几何体,其三视图分别如下,请画出这个的几何体 (正视图) (俯视图) (

13、右视图)【解析】先画出几何体的正面,再侧面,然后结合俯视图完成几何体的轮廓,如图.【评析】画三视图之前,先把几何体的结构弄清楚,确定一个正前方,从三个不同的角度进行观察. 在绘制三视图时,分界线和可见轮廓线都用实线画出,被遮挡的部分用虚线表示出来,绘制三视图. 就是由客观存在的几何物体,从观察的角度,得到反应出物体形象的几何学知识.例3 某建筑由相同的若干个房间组成,该楼的三视图如图所示,问:(1)该楼有几层?从前往后最多要走过几个房间?(2)最高一层的房间在什么位置?画出此楼的大致形状.【解析】(1)由主视图与左视图可知,该楼有3层. 由俯视图可知,从前往后最多要经过3个房间.(2)由主视图

14、与左视图可知,最高一层的房间在左侧的最后一排的房间. 楼房大致形状如右图所示.【评析】根据三视图的特征,结合所给的视图进行逆推,考察我们的想象能力与逆向思维能力. 由三视图得到相应几何体后,可以验证所得几何体的三视图与所给出的三视图是否一致. 依据三视图进行逆向分析,就是用几何知识解决实际问题的一个方面. 在工厂中,工人师傅都是根据零件结构设计的三视图,对零件进行加工制作.3、直观图:斜二测画法斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;(3).画法要写好。用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧

15、棱(4)成图例1 用斜二测法画水平放置的正六边形的直观图.画法:(1)如图(1),在正方边开ABCDEF中,取AD所在直线为x轴,对称轴MN所在直线为y轴,两轴相交于点O,使xOy = 45.(2)在图(2)中,以O为中点,在x 轴上取AD=AD,在y 轴上取M N =MN. 以点N 为中点,画BC 平行于x 轴,并且等于BC;再以M 为中点,画EF平行于x 轴,并且等于EF.(3)连接AB,CD,DE,FA,并擦去辅助线x 轴和y 轴,便获得正六边形ABCDEF水平放置的直观图ABCDEF(图(3)例2 用斜二测画法画长、宽、高分别是4cm,3cm,2cm的长方体ABCD ABCD的直观图.

16、 画法:(1)画轴. 如图,画x轴、y轴、z轴,三轴交于点O,使xOy = 45,xOz = 90.(2)画底面. 以点O为中点,在x轴上取线段MN,使MN = 4cm;在y轴上取线段PQ,使PQ =cm. 分别过点M和N作y轴的平行线,过点P和Q作x轴的平行线,设它们的交点分别为A,B,C,D,四边形ABCD就是长方体的底面ABCD.(3)画侧棱. 过A,B,C,D各点分别作z轴的平行线,并在这些平行线上分别截取2 cm长的线段AA,BB,CC,DD.(4)成图,顺次连接A,B,C,D,并加以整理(去掉辅助线,将被挡的部分改为虚线),就得长方体的直观图.例3 已知几何体的三视图说出它的结构特

17、征,并用斜二测画法画它的直观图.画法:(1)画轴. 如图(1),画x轴、z轴,使xOz=90.(2)画圆的柱的下底面. 在x轴上取A,B两点,使AB的长度等于俯视图中圆的直径,且OA = OB. 选择椭圆模板中适当的椭圆过A,B两点,使它为圆柱下底面的作法作出圆柱的下底面.(3)在Oz上截取点O,使OO 等于正视图中OO 的长度,过点O作平行于轴Ox的轴Ox,类似圆柱下底面的作法作出圆柱的上底面.(4)画圆锥的顶点. 在Oz上截取点P,使PO 等于正视图中相应的高度.(5)成图. 连接PA、PB,AA,BB,整理得到三视图表示的几何体的直观图.(如图(2))课后练习一、选择题1. 某三棱锥的正

18、视图如图所示,则下列图,所有可能成为这个三棱锥的俯视图的是()A. B. C. D. 2. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体各面直角三角形的个数是()A. 2B. 3C. 4D. 53. 如图,在三棱锥ABCD中,侧面ABD底面BCD,BCCD,AB=AD=4,BC=6,BD=43,该三棱锥三视图的正视图为()A. B. C. D. 4. 如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体的直观图,其中DD1=1,AB=BC=AA1=2,若此几何体的俯视图如图2所示,则可以作为其正视图的是()A. B. C. D. 5. 如图,是ABC的直

19、观图,其中,那么ABC是() A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 钝角三角形6. 下列三视图所对应的直观图是() A. B. C. D. 7. 用斜二测画法画如图所示的直角三角形的水平放置图,正确的是() A. B. C. D. 8. 若一几何体的正视图与侧视图均为边长是1的正方形,则下列图形一定不是该几何体的俯视图的是()A. B. C. D. 9. 利用斜二测画法画一个水平放置的平面四边形的直观图,得到的直观图是一个边长为1的正方形(如图所示),则原图形的形状是()B. C. D. 2 填空题1.如图是三角形ABC的直观图,ABC平面图形是_ (填正三角形、锐角三角形

20、、钝角三角形、直角三角形或者等腰三角形)2.如图所示的几何体,在右边的三视图中填上适当的视图名称(主视图、俯视图、左视图)并补充完整3图(1)为长方体积木块堆成的几何体的三视图,此几何体共由_ 块木块堆成;图(2)中的三视图表示的实物为_ 4.如图,图、是图表示的几何体的三视图,其中图是_ ,图是_ ,图是_ (说出视图名称)三、解答题1.画出图中两个几何体的三视图2.用斜二测画法作出边长为3cm、高4cm的矩形的直观图.(不写作法保留作图痕迹)3已知某几何体的三视图如图,画出该几何体的直观图;1.3空间几何体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。(2)特殊几何体表面积公

21、式(c为底面周长,h为高,为斜高,l为母线) 例1 如图所示,一个圆台形花盆盆口直径为20cm,盆底直径为15cm,底部渗水圆孔直径为1.5cm,盆壁长15cm.为了美化花盆的外观,需要涂油漆.已知每平方米用100毫升油漆,涂100个这样的花盆需要多少油漆(取3.14,结果精确到1毫升,可用计算器)?分析:只要求出每一个花盆外壁的表面积,就可求出油漆的用量.而花盆外壁的表面积等于花盆的侧面面积加上下底面面积,再减去底面圆孔的面积.解:如图所示,由圆台的表积公式得一个花盆外壁的表面积1000(cm2) = 0.1(m2).涂100个花盆需油漆:0.1100100 =1000(毫升).答:涂100

22、个这样的花盆约需要1000毫升油漆.例2 直平行六面体的底面是菱形,两个对角面面积分别为Q1,Q2,求直平行六面体的侧面积.【分析】解决本题要首先正确把握直平行六面体的结构特征,直平行六面体是侧棱与底面垂直的平行六面体,它的两个对角面是矩形.【解析】如图所示,设底面边长为a,侧棱长为l,两条底面对角线的长分别为c,d,即BD = c,AC = d,则由(1)得,由(2)得,代入(3)得,.S侧 =.例3 一个正三棱柱的三视图如图所示,求这个三棱柱的表面积.【解析】由三视图知正三棱柱的高为2mm.由左视图知正三棱柱的底面三角形的高为mm.设底面边长为a,则,a = 4.正三棱柱的表面积为S =

23、S侧 + 2S底 = 342 + 2(mm2).例3 有一根长为10cm,底面半径是0.5cm的圆柱形铁管,用一段铁丝在铁管上缠绕8圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为多少厘米?(精确到0.01cm)【解析】如图,把圆柱表面及缠绕其上的铁丝展开在平面上,得到矩形ABCD.由题意知,BC=10cm,AB = 2cm,点A与点C就是铁丝的起止位置,故线段AC的长度即为铁丝的最短长度.AC =(cm).所以,铁丝的最短长度约为27.05cm.【评析】此题关键是把圆柱沿这条母线展开,将问题转化为平面几何问题. 探究几何体表面上最短距离,常将几何体的表面或侧面展开,化折(曲

24、)为直,使空间图形问题转化为平面图形问题. 空间问题平面化,是解决立体几何问题基本的、常用的方法.图432例4粉碎机的下料是正四棱台形如图,它的两底面边长分别是80mm和440mm,高是200mm. 计算制造这一下料斗所需铁板是多少?【分析】 问题的实质是求四棱台的侧面积,欲求侧面积,需求出斜高,可在有关的直角梯形中求出斜高.【解析】如图所示,O、O1是两底面积的中心,则OO1是高,设EE1是斜高,在直角梯形OO1E1E中,EE1= 边数n = 4,两底边长a = 440,a= 80,斜高h=269. S正棱台侧 = = (mm2) 答:制造这一下料斗约需铁板2.8105mm2.(3)柱体、锥

25、体、台体的体积公式 例 有一堆规格相同的铁制 (铁的密度是7.8g/cm3)六角螺帽(如图)共重5.8kg,已知底面是正六边形,边长为12cm,内孔直径为10mm,高为10mm,问这堆螺帽大约有多少个(取3.14,可用计算器)?解:六角螺帽的体积是六棱柱体积与圆柱体积的差,即2956 (mm3) = 2.956(cm3)所以螺帽的个数为5.81000(7.82.956) 252(个)答:这堆螺帽大约有252个.例 已知等边圆柱(轴截面是正方形的圆柱)的全面积为S,求其内接正四棱柱的体积.【解析】如图,设等边圆柱的底面半径为r,则高h = 2r,S = S侧 + 2S底 = 2 +,.内接正四棱

26、柱的底面边长a=2r sin45=.V = S底h = 4,即圆柱的内接正四棱柱的体积为.(4) 球体的表面积和体积公式:V= ; S=例 如图,圆柱的底面直径与高都等于球的直径.求证:(1)球的体积等于圆柱体积的;(2)球的表面积等于圆柱的侧面积.证明:(1)设球的半径为R,则圆柱的底面半径为R,高为2R.因为,所以,.(2)因为,所以,S球 = S圆柱侧.例 球与圆台的上、下底面及侧面都相切,且球面面积与圆台的侧面积之比为3:4,则球的体积与圆台的体积之比为( )A6:13 B5:14C3:4 D7:15【解析】如图所示,作圆台的轴截面等腰梯形ABCD,球的大圆O内切于梯形ABCD.设球的

27、半径为R,圆台的上、下底面半径分别为r1、r2,由平面几何知识知,圆台的高为2R,母线长为r1 + r2.AOB = 90,OEAB (E为切点),R2 = OE2 = AEBE = r1r2.由已知S球S圆台侧= 4R2(r1+r2)2 = 34(r1 + r2)2 =V球V圆台 =故选A.例 在球面上有四个点P、A、B、C,如果PA、PB、PC两两垂直且PA = PB = PC = a,求这个球的体积.解:PA、PB、PC两两垂直,PA = PB = PC = a.以PA、PB、PC为相邻三条棱可以构造正方体.又P、A、B、C四点是球面上四点,球是正方体的外接球 ,正方体的对角线是球的直径

28、.课后练习1、 选择题1. 已知四棱锥PABCD的顶点都在球O的球面上,底面ABCD是矩形,平面PAD底面ABCD,PAD为正三角形,AB=2AD=4,则球O的表面积为()A. 563B. 643C. 24D. 8032. 球O与棱长为2的正方体ABCDA1B1C1D1的各个面都相切,点M为棱DD1的中点,则平面ACM截球O所得截面的面积为()A. 43B. C. 23D. 33. 如图,网格纸上小正方形变长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体体积为() A. 83B. 163C. 8D. 8534. 三棱锥ABCD中,DAAC,DBBC,DA=AC,DB=BC,AB=22

29、CD,若三棱锥ABCD的体积为223,则CD的长为()A. 2B. 22C. 3D. 235. 九章算术是我国古代内容极为丰富的数学名著,书中提到了一种名为“刍甍”的五面体(如图):面ABCD为矩形,棱EF/AB.若此几何体中,AB=4,EF=2,ADE和BCF都是边长为2的等边三角形,则此几何体的表面积为()A. 83B. 8+83C. 62+23D. 8+62+236. 已知AD与BC是四面体ABCD中相互垂直的棱,若AD=BC=6,且ABD=ACD=60,则四面体ABCD的体积的最大值是()A. 182B. 362C. 18D. 367. 三棱锥的三条侧棱两两垂直,其长分别为3,2,1,

30、则该三棱锥的外接球的表面积()A. 24B. 18C. 10D. 68. 点M为棱长是22的正方体ABCDA1B1C1D1的内切球O球面上的动点,点N为B1C1的中点,若满足DMBN,则动点M的轨迹的长度为()A. 255B. 455C. 2105D. 41059. 四面体PABC的四个顶点都在球O的球面上,PA=8,BC=4,PB=PC=AB=AC,且平面PBC平面ABC,则球O的表面积为()A. 64B. 65C. 66D. 12810. 三棱锥PABC的三条侧棱两两垂直,且PA=PB=PC=1,则其外接球上的点到平面ABC的距离的最大值为()A. 32B. 36C. 33D. 233二、

31、填空题1.若正四棱锥PABCD的高为2,侧棱PA与底面ABCD所成角的大小为4,则该正四棱锥的体积为_ 2.在ABC中,C=90,BC=23,AC=2,M为AB中点,将ACM沿CM折起,使A、B之间的距离为22,则三棱锥MABC的体积为_ 3.已知等边三角形ABC的边长为43,M,N分别为AB,AC的中点,沿MN将ABC折成直二面角,则四棱锥AMNCB的外接球的表面积为_ 4.如图是两个腰长均为10cm的等腰直角三角形拼成的一个四边形ABCD,现将四边形ABCD沿BD折成直二面角ABDC,则三棱锥ABCD的外接球的体积为_ cm35.如图,在直三棱柱ABCA1B1C1中,若四边形AA1C1C是

32、边长为4的正方形,且AB=3,BC=5,M是AA1的中点,则三棱锥A1MBC1的体积为_ 三、解答题1如图,四棱锥SABCD的底面边长为1的正方形,每条侧棱的长均为2,P为侧棱SD上的点(1)求证:ACSD;(2)若SD平面PAC,求三棱锥PACD的体积2.底面半径为3,高为62的圆锥有一个内接的正四棱柱(底面是正方形,侧棱与底面垂直的四棱柱)(1)设正四棱柱的底面边长为x,试将棱柱的高h表示成x的函数;(2)当x取何值时,此正四棱柱的表面积最大,并求出最大值3.如图(单位:cm),求图中阴影部分绕AB旋转一周所形成的几何体的表面积和体积第2章 点、直线、平面之间的位置关系2.1空间点、直线、

33、平面之间的位置关系平面:平面的概念: A.描述性说明; B.平面是无限伸展的;平面的表示:通常用希腊字母、表示,如平面(通常写在一个锐角内);也可以用两个相对顶点的字母来表示,如平面BC。点与平面的关系:点A在平面内,记作;点不在平面内,记作点与直线的关系:点A的直线l上,记作:Al; 点A在直线l外,记作Al;直线与平面的关系:直线l在平面内,记作l;直线l不在平面内,记作l。公理1:如果一条直线上的两点在一个平面内,那么这条直线在 此平面内。应用:检验桌面是否平; 判断直线是否在平面内用符号语言表示公理1: 公理2:过不在一条直线上的三点,有且只有一个平面推论:一直线和直线外一点确定一平面

34、;两相交直线确定一平面;两平行直线确定一平面。公理2及其推论作用:它是空间内确定平面的依据 它是证明平面重合的依据 公理3:如果两个不重合的平面有一个公共点,那么它们有且只 有一条过改点的公共直线符号:平面和相交,交线是a,记作a。符号语言:公理3的作用:它是判定两个平面相交的方法。它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。它可以判断点在直线上,即证若干个点共线的重要依据。例 如图,用符号表示下图图形中点、直线、平面之间的位置关系.分析:根据图形,先判断点、直线、平面之间的位置关系,然后用符号表示出来.解:在(1)中,.在(2)中,.线线关系:1 空间的两条直线有如下三种

35、关系:共面直线 相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线异面直线所成角:直线a、b是异面直线,经过空间任意一点O,分别引直线aa,bb,则把直线a和b所成的锐角(或直角)叫做异面直线a和b所成的角。两条异面直线所成角的范围是(0,90,若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。说明:(1)判定空间直线是异面直线方法:根据异面直线的定义;异面直线的判定定理(2)在异面直线所成角定义中,空间一点O是任取的,而和点O的位置无

36、关。求异面直线所成角步骤:A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。 B、证明作出的角即为所求角 C、利用三角形来求角公理4:平行于同一条直线的两条直线互相平行。符号表示为:设a、b、c是三条直线=acabcb强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都 适用。 公理4作用:判断空间两条直线平行的依据例 如图所示,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.证明:连接BD,因为EH是ABD的中位线,所以EHBD,且.同理FGBD,且.因为EHFG,且EH = F

37、G,所以 四边形EFGH为平行四边形.例 如图,已知正方体ABCD ABCD.(1)哪些棱所在直线与直线BA是异面直线?(2)直线BA和CC的夹角是多少?(3)哪此棱所在的直线与直线AA垂直?解:(1)由异面直线的定义可知,棱AD、DC、CC、DD、DC、BC所在直线分别与直线BA是异面直线.(2)由BBCC可知,BBA为异面直线BA与CC的夹角,BBA= 45.(3)直线AB、BC、CD、DA、AB、BC、CD、DA分别与直线AA垂直.线面位置关系(1)直线在平面内 有无数个公共点(2)直线与平面相交 有且只有一个公共点(3)直线在平面平行 没有公共点指出:直线与平面相交或平行的情况统称为直

38、线在平面外,可用a 来表示 a a=A a 4、 面面关系平行没有公共点;相交有一条公共直线。b例4 下列命题中正确的个数是( B )若直线l上有无数个点不在平面内,则l.若直线l与平面平行,则l与平面内的任意一条直线都平行.如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行.若直线l与平面平行,则l与平面内的任意一条直线没有公共点.A0 B1 C2 D3例5直线与平面平行的充要条件是这条直线与平面内的( )A一条直线不相交B两条直线不相交C任意一条直线都不相交D无数条直线都不相交【解析】直线与平面平行,那么直线与平面内的任意直线都不相交,反之亦然;故应选C.例6“平面内有无穷

39、条直线都和直线l平行”是“”的( ).A充分而不必要条件B必要而不充分条件C充分必要条件D即不充分也不必要条件【解析】如果直线在平面内,直线可能与平面内的无穷条直线都平行,但直线不与平面平行,应选B.例7 求证:如果过一个平面内一点的直线平行于与该平面平行的一条直线,则这条直线在这个平面内.已知:l,点P,Pm,ml求证:.证明:设l与P确定的平面为,且= m,则lm.又知lm,由平行公理可知,m与m重合.所以.例8 已知平面,直线a,求证a.证明:假设a,则a在内或a与相交.a与有公共点.又a.a与有公共点,与面面矛盾.课后练习1、给出的下列命题中,正确命题的个数是( ) 梯形的四个顶点在同

40、一平面内 三条平行直线必共面 有三个公共点的两个平面必重合 每两条都相交且交点各不相同的四条直线一定共面A.1 B.2 C.3 D.42、如图2-1-17,空间四边形SABC中,各边及对角线长都相等,若E、F分别为SC、AB的中点,那么异面直线EF与SA所成的角等于( ) A.90 B.60 C.45 D.30图2-1-173、如果直线a平面,那么直线a与平面内的( ) A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交4、若点M在直线上,在平面内,则M、a、间的上述关系可记为( ) A.Ma,a B.Ma,aC.Ma,a D.Ma,a5、在空间四边形ABCD的边A

41、B、BC、CD、DA上分别取E、F、G、H四点,如果EF与HG交于点M,则( ) A.M一定在直线AC上B.M一定在直线BD上C.M可能在AC上,也可能在BD上D.M不在AC上,也不在BD上6、下列说法正确的是() A.三点确定一个平面B.四边形一定是平面图形C.梯形一定是平面图形D.平面和平面有不同在一条直线上的三个交点7、若点M在直线a上,a在平面内,则M,a,间的上述关系可记为() A.Ma,aB.Ma,C., D., 8、异面直线是指() A.空间中两条不相交的直线B.分别位于两个不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线9、若a,b,

42、则直线a、b的位置关系是() 来源:学,科,网Z,X,X,KA.平行 B.相交C.异面 D.A、B、C均有可能10、下列命题: 若直线l平行于平面内的无数条直线,则l;若直线a在平面外,则a;若直线ab,直线,则a;若直线ab,b,那么直线a就平行于平面内的无数条直线.其中真命题的个数为()A.1 B.2 C.3 D.4二、填空题1、空间三条直线两两相交,点P不在这三条直线上,那么由点P和这三条直线最多可以确定的平面的个数为_.参考答案与解析:解析:(1)当题中三条直线共点但不共面相交时,可确定3个平面;而P点与每条直线又可确定3个平面,故共确定6个.2、和两条平行直线中的一条是异面直线的直线

43、与另一条直线的位置关系是_. 参考答案与解析:思路解析:由公理4可知不可能平行,只有相交或异面. 答案:相交或异面主要考察知识点:空间直线和平面3、看图填空. (1)ACBD=_;(2)平面AB1平面A1C1=_;(3)平面A1C1CA平面AC=_;(4)平面A1C1CA平面D1B1BD=_;(5)平面A1C1平面AB1平面B1C=_;(6)A1B1B1BB1C1=_.三、解答题1、如图,已知ABC在平面外,它的三边所在直线分别交平面于点P、Q、R,求证:P、Q、R三点共线.来源:Zxxk.Com2、如图,已知正方体ABCDABCD. 哪些棱所在直线与直线BA是异面直线?直线BA和CC的夹角是

44、多少?哪些棱所在的直线与直线AA垂直?3、已知直线bc,且直线a与b、c都相交,求证:直线a,b,c共面. 2.2直线、平面平行的判定及其性质1、 线面平行线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。 线线平行线面平行例 已知:空间四边形ABCD,E、F分别是AB、AD的中点.求证EF平面BCD.证明:连结BD.在ABD中,因为E、F分别是AB、AD的中点,所以EFBD.又因为BD是平面ABD与平面BCD的交线,平面BCD,所以EF平面BCD.线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。线面平行线

45、线平行例 如图所示的一块林料中,棱BC平行平面AC.(1)要经过面AC内一的点P和棱BC将木料锯开,应怎样画线?(2)所画的线与平面AC是什么位置关系?解:(1)如图,在平面AC,过点P作直线EF,使EFBC,并分别交棱AB,CD于点E,F.连接BE,CF.则EF、BE、CF就是应画的线.(2)因为棱BC平行于平面AC,平面BC与平面AC交于BC,所以,BCBC.由(1)知,EFBC,因此.BE、CF显然都与平面AC相交面面平行两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行面面平行),(2)如果在两个平面内,各有两组相交直线对应平行,那

46、么这两个平面平行。(线线平行面面平行),(3) 垂直于同一条直线的两个平面平行,例 已知正方体ABCD A1B1C1D1 证:平面AB1D1平面C1BD.证明:因为ABCD A1B1C1D1为正方体,所以D1C1A1B1,D1C1 = A1B1又ABA1B1,AB = A1B1所以D1C1BA 为平行四边形.所以D1AC1B.又平面C1BD,平面C1BD由直线与平面平行的判定定理得D1A平面C1BD同理D1B1平面C1BD又所以 平面AB1D1平面C1BD.点评:线线平行线面平行面面平行.两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行线面平行)

47、(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行线线平行)例1 如图,已知平面,满足,证:ab. 证明:因为,所以,.又因为,所以a、b没有公共点,又因为a、b同在平面内,所以ab.课后习题一、选择题1、若两个平面互相平行,则分别在这两个平行平面内的直线( ) A.平行 B.异面 C.相交 D.平行或异面2、下列结论中,正确的有( ) 若a,则aa平面,b则ab平面平面,a,b,则ab平面,点P,a,且Pa,则aA.1个 B.2个 C.3个 D.4个3、在空间四边形ABCD中,E、F分别是AB和BC上的点,若AEEB=CFFB=13,则对角线AC和平面DEF的位置关系是

48、( ) A.平行 B.相交 C.在内 D.不能确定4、a,b是两条异面直线,A是不在a,b上的点,则下列结论成立的是( ) A.过A有且只有一个平面平行于a,bB.过A至少有一个平面平行于a,b来源:Z&xx&k.ComC.过A有无数个平面平行于a,bD.过A且平行a,b的平面可能不存在5、已知直线a与直线b垂直,a平行于平面,则b与的位置关系是( ) A.b B.bC.b与相交 D.以上都有可能6、下列命题中正确的命题的个数为( ) 直线l平行于平面内的无数条直线,则l;若直线a在平面外,则a;若直线ab,直线b,则a;若直线ab,b平面,那么直线a就平行于平面内的无数条直线.A.1 B.2 C.3 D.47、下列命题正确的个数是( ) (1)若直线l上有无数个点不在内,则l(2)若直线l与平面平行,l与平面内的任意一直线平行(3)两条平行线中的一条直线与平面平行,那么另一条也与这个平面平行(4)若一直线a和平面内一直线b平行,则aA.0个 B.1个 C.2个 D.3个8、已知m、n是两条不重合的直线,、是三个两两不重合的平面,给出下列四个命题: 若m,m,则;若,则;若m,n,mn,则;若m

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论