《图形的相似复习》ppt课件_第1页
《图形的相似复习》ppt课件_第2页
《图形的相似复习》ppt课件_第3页
《图形的相似复习》ppt课件_第4页
《图形的相似复习》ppt课件_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第23章,章末复习,图形的相似,图形的相似,相似图形,中位线,相似三角形,判定,性质,应用,成比例线段,位似图形,图形与坐标,一、成比例线段 对于四条线段a、b、c、d,如果其中两条线段的长度的比等于另外两条线段的比, 如 (或abcd),那么,这四条线段叫做成比例线段,简称比例线段此时也称这四条线段成比例,如果 (b=d=f0), 那么,线段的比要注意以下几点: 线段的比是正数 单位要统一 线段的比与线段的长度无关,如果, 那么adbc 如果adbc (a、b、c、d都不等于0), 那么,1、各角对应相等,各边对应成比例的两个多边形 叫相似多边形。 2、三个角对应相等,三条边对应成比例的两个

2、 三角形叫相似三角形.两个相似三角形用“”表示,读做“相似于”。 3、相似三角形对应边的比,叫做相似比,二、相似图形,如ABC与ABC相似,注意:对应顶点写 在对应位置上,记作“ABCABC”,相似比=对应边的比值=,对应角相等、对应边成比例,对应高之比、对应中线之比、对应角平分线之比都等于相似比,周长之比等于相似比,面积之比等于相似比的平方,方法2: 平行于三角形一边的直线与其他两边(或延 长线)相交,所构成的三角形与原三角形相似;,方法5: 三边对应成比例的,两三角形相似.,相似三角形的判定方法,方法4: 两边对应成比例且夹角相等,两三角形相似.,方法1:通过定义(不常用),方法3: 两对

3、应角相等的,两三角形相似.,相似三角形的应用主要有两个方面:,(1) 测高,测量不能到达两点间的距离,常构造相似三角形求解。,(不能直接使用皮尺或刻度尺量的),(不能直接测量的两点间的距离),测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决。,(2) 测距,相似三角形的应用,三角形的中位线平行于第三边,并且等于第三边的一半。,三、中位线,1.进行位似变换后得到的图形与原图形相似,对应点的连线都经过位似中心,对应顶点到位似中心的比等于相似比,2.进行位似变换时,位似中心可以在图形的外部,也可以在图形的内部或图形的一边上,图形的顶点处,3.画已知图形的位似图形时,要明确位似中心,相似比,以及两图形在位似中心的同侧或两侧,四、位似图形的性质,(1)图形沿x轴平移,横变纵不变; 图形沿y轴平移,纵变横不变。,直角坐标系中,图形经过平移、对称、放缩的变化, 其对应平面的坐标也发生了变化,其变化规律为:,(2)图形关于x轴对称,横不变,纵为相反数; 图形关于y轴对称,纵不变,横为相反数。,(3)图形关于原点对称,横纵皆为相反数。,(4)以O为位似中心放大或缩小,横纵坐标都 扩大或缩小相同的倍数。,五、图形与坐标,通过本节课的学习,对本章的知识你有哪些新的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论