定积分的应用(体积、旋转体的侧面积)_第1页
定积分的应用(体积、旋转体的侧面积)_第2页
定积分的应用(体积、旋转体的侧面积)_第3页
定积分的应用(体积、旋转体的侧面积)_第4页
定积分的应用(体积、旋转体的侧面积)_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1,例1. 求由摆线,的一拱与 x 轴所围平面图形的面积 .,解:,2,例2. 计算心形线,与圆,所围图形的面积 .,解: 利用对称性 ,所求面积,3,例3. 求双纽线,所围图形面积 .,解: 利用对称性 ,则所求面积为,思考: 用定积分表示该双纽线与圆,所围公共部分的面积 .,答案:,二、体积,7,特别 , 当考虑连续曲线段,轴旋转一周围成的立体体积时,有,当考虑连续曲线段,绕 y 轴旋转一周围成的立体体积时,有,8,例2计算由椭圆,所围图形绕 x 轴旋转而,转而成的椭球体的体积.,解: 方法1 利用直角坐标方程,则,(利用对称性),9,方法2 利用椭圆参数方程,则,特别当b = a 时,

2、就得半径为a 的球体的体积,14,例5. 计算摆线,的一拱与 y0,所围成的图形分别绕 x 轴 , y 轴旋转而成的立体体积 .,解: 绕 x 轴旋转而成的体积为,利用对称性,15,绕 y 轴旋转而成的体积为,注意上下限 !,注,16,分部积分,注,(利用“偶倍奇零”),17,柱壳体积,说明:,柱面面积,18,偶函数,奇函数,21,例7 设,在 x0 时为连续的非负函数, 且,形绕直线 xt 旋转一周所成旋转体体积 ,证明:,证:,利用柱壳法,则,故,22,设平面图形 A 由,与,所确定 , 求,图形 A 绕直线 x2 旋转一周所得旋转体的体积 .,提示:,选 x 为积分变量.,旋转体的体积为

3、,例8.,若选 y 为积分变量, 则,23,设平面光滑曲线,求,积分后得旋转体的侧面积,它绕 x 轴旋转一周所得到的旋转曲面的侧面积 .,取侧面积元素:,24,侧面积元素,的线性主部 .,若光滑曲线由参数方程,给出,则它绕 x 轴旋转一周所得旋转体的,不是薄片侧面积S 的,注意:,侧面积为,25,例9. 计算圆,x 轴旋转一周所得的球台的侧面积 S .,解: 对曲线弧,应用公式得,当球台高 h2R 时, 得球的表面积公式,26,例10. 求由星形线,一周所得的旋转体的表面积 S .,解: 利用对称性,绕 x 轴旋转,27,星形线,星形线是内摆线的一种.,点击图片任意处 播放开始或暂停,大圆半径 Ra,小圆半径,参数的几何意义,(当小圆在圆内沿圆周滚动,时, 小圆上

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论