版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、专题一,第 三 讲,思想方法概述,应用角度例析,通法归纳领悟,专题专项训练,角度一,角度二,角度三,1分类讨论思想的含义 分类讨论思想就是当问题所给的对象不能进行统一研究时,需要把研究对象按某个标准分类,然后对每一类分别研究得出结论,最后综合各类结果得到整个问题的解答实质上,分类讨论是“化整为零,各个击破,再积零为整”的解题策略,2分类讨论的常见类型 有关分类讨论的数学问题需要运用分类讨论思想来解决,引起分类讨论的原因大致可归纳为如下几种: (1)由数学概念引起的分类讨论:有的概念本身是分类的,如绝对值、直线斜率、指数函数、对数函数等 (2)由性质、定理、公式的限制引起的分类讨论:有的数学定理
2、、公式、性质是分类给出的,在不同的条件下结论不一致,如等比数列的前n项和公式、函数的单调性等,(3)由数学运算要求引起的分类讨论:如除法运算中除数不为零,偶次方根被开方数为非负,对数真数与底数的要求,指数运算中底数的要求,不等式两边同乘以一个正数、负数,三角函数的定义域等 (4)由图形的不确定性引起的分类讨论:有的图形类型、 位置需要分类,如角的终边所在的象限,点、线、面的位置关系等 (5)由参数的变化引起的分类讨论:某些含有参数的问题,如含参数的方程、不等式,由于参数的取值不同会导致所得结果不同,或对于不同的参数值要运用不同的求解或证明方法,(6)由实际意义引起的讨论:此类问题常常出现在应用
3、题中,特别是排列、组合中的计数问题 3分类讨论解题的步骤 (1)确定分类讨论的对象:即对哪个变量或参数进行分类讨论 (2)对所讨论的对象进行合理的分类 (3)逐类讨论:即对各类问题详细讨论,逐步解决 (4)归纳总结:将各类情况总结归纳,由概念、法则、公式引起的分类讨论,(2)已知数列an的前n项和Snpn1(p是常数),则数列an是 ( ) A等差数列 B等比数列 C等差数列或等比数列 D以上都不对 思路点拨 (1)由于题目中没有明确此圆锥曲线是椭圆还是双曲线,故应进行分类讨论 (2)由于公式anSnSn1适用条件为n2,另外p的取值会影响数列的性质,故应考虑分类讨论,(2)Snpn1, a1
4、p1,anSnSn1(p1)pn1(n2), 当p1,且p0时,an是等比数列; 当p1时,an是等差数列 当p0时,a11,an0(n2),此时an既不是等差数列也不是等比数列 答案 (1)A (2)D,(1)圆锥曲线没有给定时,要讨论是哪类圆锥曲线,否则会造成漏解.本题中由于所给曲线有两个焦点,所以不必考虑抛物线. (2)本题的讨论在于p的取值,同时对n的取值还要讨 论,极易错误地选取C的原因就是忽略了对n的讨论.,例2 (2012北京高考)已知函数f(x)ax21(a0),g(x)x3bx. (1)若曲线yf(x)与曲线yg(x)在它们的交点(1,c)处具有公共切线,求a,b的值; (2
5、)当a24b时,求函数f(x)g(x)的单调区间,并求其在区间(,1上的最大值 思路点拨 (1)由两曲线在交点(1,c)处具有公切线知,f(1)g(1),f(1)g(1),由参数的变化而引起的分类讨论,(2)由于f(x)g(x)的单调区间与a或b有关,因此求其在区间(,1上的最大值时应对a或b的取值进行分类讨论 解 (1)f(x)2ax,g(x)3x2b, 因为曲线yf(x)与曲线yg(x)在它们的交点(1,c)处具有公共切线, 所以f(1)g(1),且f(1)g(1) 即a11b,且2a3b. 解得a3,b3.,由于所求的变量或参数的取值不同会导致结果不同,所以要对某些问题中所求的变量进行讨
6、论;而有的问题中虽然不需要对变量讨论,但却要对参数讨论.在求解时要注意讨论的对象,同时应理顺讨论的目的.,2(2012温州模拟)已知函数f(x)(2xa)ex(e为自然对数的 底数) (1)求函数f(x)的极小值; (2)对区间1,1内的一切实数x,都有2f(x)e2成立,求实数a的取值范围,例3 抛物线y24px(p0)的焦点为F,P为其上的一点,O为坐标原点,若OPF为等腰三角形,则这样的P点的个数为 ( ) A2 B3 C4 D6 思路点拨 由于本题只说明OPF为等腰三角形,但是没有明确三角形的顶点,因此应进行分类讨论,根据图形位置或形状变化分类讨论,答案 C,本题的分类讨论是由于点P的
7、位置变化而引起的.一般由图形的位置或形状变化引发的讨论包括:二次函数对称轴位置的变化;函数问题中区间的变化;函数图像形状的变化;直线由斜率引起的位置变化;圆锥曲线由焦点引起的位置变化或由离心率引起的形状变化;立体几何中点、线、面的位置变化等.,(5)幂函数yxa的幂指数a的正、负与定义域、单调性、奇偶性的关系; (6)指数函数yax及其反函数yloga x中底数a1及0a1对函数单调性的影响; (7)等比数列前n项和公式中q1与q1的区别; (8)不等式性质中两边同乘(除)以正数或负数时对不等号方向的影响; (9)直线与圆锥曲线位置关系的讨论; (10)运用点斜式、斜截式直线方程时斜率k是否存在,2利用分类讨论思想应注意以下问题 (1)分类讨论要标准统一,层次分明,分类要做到“不重不漏” (2)分类讨论时要根据题设条件确定讨论的级别,再确定每级讨论的对象与标准,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 飞机数字化技术
- 2026江苏无锡市宜兴市司法局招聘编外人员2人备考考试试题及答案解析
- 网吧活动的策划方案(3篇)
- 2026辽宁大连医科大学附属第一医院招聘高层次人才120人参考考试题库及答案解析
- 城市老街活动策划方案(3篇)
- 铁路红线施工方案(3篇)
- 2026广西南宁马山县人力资源和社会保障局招聘外聘工作人员(就业专干)1人考试备考试题及答案解析
- 2026广东广州银行选聘备考考试试题及答案解析
- 2026广东广州市黄埔区人民政府黄埔街道办事处政府聘员招聘1人考试参考题库及答案解析
- 2026陕西西安管理学院文员招聘1人参考考试题库及答案解析
- 《公共科目》军队文职考试新考纲题库详解(2026年)
- 2025至2030中国啤酒市场行业调研及市场前景预测评估报告
- 报警受理工作制度规范
- 多源信息融合驱动的配电网状态估计:技术革新与实践应用
- 华电集团企业介绍
- 2025年安徽省从村(社区)干部中录用乡镇(街道)机关公务员考试测试题及答案
- 2025年AI时代的技能伙伴报告:智能体、机器人与我们(英文版)
- 中国舞蹈知识常见考点测试卷
- 人力资源管理社会实践调研报告
- 2025年医保网络安全自检自查报告
- 制造企业总经理年终总结
评论
0/150
提交评论