




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、平面向量易错题解析1.你熟悉平面向量的运算(和、差、实数与向量的积、数量积)、运算性质和运算的几何意义吗?2.你通常是如何处理有关向量的模(长度)的问题?(利用;)3.你知道解决向量问题有哪两种途径?(向量运算;向量的坐标运算)4.你弄清“”与“”了吗?问题:两个向量的数量积与两个实数的乘积有什么区别?(1) 在实数中:若,且ab=0,则b=0,但在向量的数量积中,若,且,不能推出.(2) 已知实数,且,则a=c,但在向量的数量积中没有.(3) 在实数中有,但是在向量的数量积中,这是因为左边是与共线的向量,而右边是与共线的向量.5.正弦定理、余弦定理及三角形面积公式你掌握了吗?三角形内的求值、
2、化简和证明恒等式有什么特点?1.向量有关概念:(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。如已知a(1,2),b(4,2),则把向量按向量(1,3)平移后得到的向量是_(答:(3,0)(2)零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的;(3)单位向量:长度为一个单位长度的向量叫做单位向量(与共线的单位向量是);(4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;(5)平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:,规定零向量和任何向
3、量平行。提醒:相等向量一定是共线向量,但共线向量不一定相等;两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;平行向量无传递性!(因为有);三点共线共线;(6)相反向量:长度相等方向相反的向量叫做相反向量。的相反向量是。如下列命题:(1)若,则。(2)两个向量相等的充要条件是它们的起点相同,终点相同。(3)若,则是平行四边形。(4)若是平行四边形,则。(5)若,则。(6)若,则。其中正确的是_(答:(4)(5)2.向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文
4、字母来表示,如,等;(3)坐标表示法:在平面内建立直角坐标系,以与轴、轴方向相同的两个单位向量,为基底,则平面内的任一向量可表示为,称为向量的坐标,叫做向量的坐标表示。如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。3.平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量,有且只有一对实数、,使e1e2。如(1)若,则_(答:);(2)下列向量组中,能作为平面内所有向量基底的是 a. b. c. d. (答:b);(3)已知分别是的边上的中线,且,则可用向量表示为_(答:);(4)已知中,点在边上,且,则的值是_(答:0)4.实数与向量的积:实数与
5、向量的积是一个向量,记作,它的长度和方向规定如下:当0时,的方向与的方向相同,当0;当p点在线段 pp的延长线上时1;当p点在线段pp的延长线上时;若点p分有向线段所成的比为,则点p分有向线段所成的比为。如若点分所成的比为,则分所成的比为_(答:)(3)线段的定比分点公式:设、,分有向线段所成的比为,则,特别地,当1时,就得到线段pp的中点公式。在使用定比分点的坐标公式时,应明确,、的意义,即分别为分点,起点,终点的坐标。在具体计算时应根据题设条件,灵活地确定起点,分点和终点,并根据这些点确定对应的定比。如(1)若m(-3,-2),n(6,-1),且,则点p的坐标为_(答:);(2)已知,直线
6、与线段交于,且,则等于_(答:或)11.向量中一些常用的结论:(1)一个封闭图形首尾连接而成的向量和为零向量,要注意运用;(2),特别地,当同向或有;当反向或有;当不共线(这些和实数比较类似).(3)在中,若,则其重心的坐标为。如若abc的三边的中点分别为(2,1)、(-3,4)、(-1,-1),则abc的重心的坐标为_(答:);为的重心,特别地为的重心;为的垂心;向量所在直线过的内心(是的角平分线所在直线);的内心;(3)若p分有向线段所成的比为,点为平面内的任一点,则,特别地为的中点;(4)向量中三终点共线存在实数使得且.如平面直角坐标系中,为坐标原点,已知两点,若点满足,其中且,则点的轨
7、迹是_(答:直线ab)例题1已知向量,且求 (1) 及; (2)若的最小值是,求实数的值. 错误分析:(1)求出=后,而不知进一步化为,人为增加难度; (2)化为关于的二次函数在的最值问题,不知对对称轴方程讨论. 答案: (1)易求, = ;(2) = = 从而:当时,与题意矛盾, 不合题意; 当时, ; 当时,解得,不满足;综合可得: 实数的值为.例题2在中,已知,且的一个内角为直角,求实数的值.错误分析:是自以为是,凭直觉认为某个角度是直角,而忽视对诸情况的讨论.答案: (1)若即 故,从而解得; (2)若即,也就是,而故,解得; (3)若即,也就是而,故,解得 综合上面讨论可知,或或例题
8、4已知向量m=(1,1),向量与向量夹角为,且=-1,(1)求向量;(2)若向量与向量=(1,0)的夹角为,向量=(cosa,2cos2),其中a、c为dabc的内角,且a、b、c依次成等差数列,试求|+|的取值范围。解:(1)设=(x,y)则由=得:cos= 由=-1得x+y=-1 联立两式得或=(0,-1)或(-1,0)(2) =得=0若=(1,0)则=-10故(-1,0) =(0,-1)2b=a+c,a+b+c=p b= c=+=(cosa,2cos2) =(cosa,cosc) |+|= = =0a02a-1cos(2a+)0当m0时,2mcos2q0,即f()f() 当m0时,2mc
9、os2q0,即f()f()例题6已知a、b、c为dabc的内角,且f(a、b)=sin22a+cos22b-sin2a-cos2b+2(1)当f(a、b)取最小值时,求c(2)当a+b=时,将函数f(a、b)按向量平移后得到函数f(a)=2cos2a求解:(1) f(a、b)=(sin22a-sin2a+)+(cos22b-cos2b+)+1 =(sin2a-)2+(sin2b-)2+1当sin2a=,sin2b=时取得最小值,a=30或60,2b=60或120 c=180-b-a=120或90 (2) f(a、b)=sin22a+cos22()- = =例题7已知向量(m为常数),且,不共线
10、,若向量,的夹角落为锐角,求实数x的取值范围.解:要满足为锐角 只须0且() = = =即x (mx-1) 0 1当 m 0时x0 或2m0时,x ( -mx+1) 0 ,3m=0时只要x 0时, x = 0时, x 0,(1)用k表示ab;(2)求ab的最小值,并求此时ab的夹角的大小。解 (1)要求用k表示ab,而已知|ka+b|=|akb|,故采用两边平方,得|ka+b|2=(|akb|)2k2a2+b2+2kab=3(a2+k2b22kab)8kab=(3k2)a2+(3k21)b2ab =a=(cos,sin),b=(cos,sin),a2=1, b2=1,ab =(2)k2+12k
11、,即=,ab的最小值为,又ab =| a|b |cos,|a|=|b|=1=11cos。=60,此时a与b的夹角为60。错误原因:向量运算不够熟练。实际上与代数运算相同,有时可以在含有向量的式子左右两边平方,且有|a+b|2=|(a+b)2|=a2+b2+2ab或|a|2+|b|2+2ab。例题9已知向量, ()求的值;()若,且,求的值解(),. , ,即 . . () , , .例题10已知o为坐标原点,点e、f的坐标分别为(-1,0)、(1,0),动点a、m、n满足(),()求点m的轨迹w的方程;()点在轨迹w上,直线pf交轨迹w于点q,且,若,求实数的范围解:(), mn垂直平分af又
12、, 点m在ae上, , , 点m的轨迹w是以e、f为焦点的椭圆,且半长轴,半焦距, 点m的轨迹w的方程为()()设 , 由点p、q均在椭圆w上, 消去并整理,得,由及,解得 基础练习题1.设平面向量=(2,1),=(,1),若与的夹角为钝角,则的取值范围是( )a、 b、c、 d、答案:a点评:易误选c,错因:忽视与反向的情况。2.o是平面上一定点,a,b,c是平面上不共线的三个点,动点p满足,则p的轨迹一定通过abc的( ) (a)外心 (b)内心 (c)重心 (d)垂心正确答案:b。错误原因:对理解不够。不清楚与bac的角平分线有关。3.若向量 =(cosa,sina) , =, 与不共线
13、,则与一定满足( )a 与的夹角等于a-bb c(+)(-)d 正确答案:c 错因:学生不能把、的终点看成是上单位圆上的点,用四边形法则来处理问题。4.已知o、a、b三点的坐标分别为o(0,0),a(3,0),b(0,3),是p线段ab上且 =t (0t1)则 的最大值为() a3b6c9d12正确答案:c 错因:学生不能借助数形结合直观得到当|op|cosa最大时, 即为最大。5.在中,则的值为 ( )a 20 b c d 错误分析:错误认为,从而出错.答案: b略解: 由题意可知,故=.6.已知向量 =(2cosj,2sinj),j(), =(0,-1),则 与 的夹角为( )a-jb+j
14、cj-dj正确答案:a 错因:学生忽略考虑与夹角的取值范围在0,p。7.如果,那么 ( )a b c d在方向上的投影相等正确答案:d。错误原因:对向量数量积的性质理解不够。8.已知向量则向量的夹角范围是( ) a、/12,5/12 b、0,/4 c、/4,5/12 d、 5/12,/2 正确答案:a错因:不注意数形结合在解题中的应用。9.设=(x1,y1),=(x2,y2),则下列与共线的充要条件的有( ) 存在一个实数,使=或=; |=| |; ; (+)/()a、1个 b、2个 c、3个 d、4个答案:c点评:正确,易错选d。10.以原点o及点a(5,2)为顶点作等腰直角三角形oab,使
15、,则的坐标为( )。a、(2,-5) b、(-2,5)或(2,-5) c、(-2,5) d、(7,-3)或(3,7)正解:b设,则由 而又由得 由联立得。误解:公式记忆不清,或未考虑到联立方程组解。11.设向量,则是的( )条件。a、充要 b、必要不充分 c、充分不必要 d、既不充分也不必要正解:c若则,若,有可能或为0,故选c。误解:,此式是否成立,未考虑,选a。12.在oab中,若,则=( )a、 b、 c、 d、正解:d。(lv为与的夹角)误解:c。将面积公式记错,误记为13.设平面向量,若与的夹角为钝角,则的取值范围是 (a)a、 b、(2,+ c、( d、(-错解:c错因:忽视使用时
16、,其中包含了两向量反向的情况正解:a14.设是任意的非零平面向量且互不共线,以下四个命题: 若不平行其中正确命题的个数是 ( )a、1个 b、2个 c、3个 d、4个正确答案:(b)错误原因:本题所述问题不能全部搞清。15.若向量=,=,且,的夹角为钝角,则的取值范围是_. 错误分析:只由的夹角为钝角得到而忽视了不是夹角为钝角的充要条件,因为的夹角为时也有从而扩大的范围,导致错误. 正确解法: ,的夹角为钝角, 解得或 (1) 又由共线且反向可得 (2) 由(1),(2)得的范围是答案: .16.已知平面上三点a、b、c满足的值等于( c )a25b24c25d2417.已知ab是抛物线的任一
17、弦,f为抛物线的焦点,l为准线.m是过点a且以向量为方向向量的直线. (1)若过点a的抛物线的切线与y轴相交于点c,求证:|af|=|cf|; (2)若异于原点),直线ob与m相交于点p,求点p的轨迹方程; (3)若ab过焦点f,分别过a,b的抛物线两切线相交于点t,求证:且t在直线l上.解:(1)设a(,因为导数,则直线ac的方程:由抛物线定义知,|af|=+,又|cf|=()=+,故|af|=|cf|. (2)设由得. 直线ob方程: 直线m的方程:, 由得y=p,故点p的轨迹方程为y=p(x0). (3)设则因为ab是焦点弦,设ab的方程为:得由(1)知直线at方程:同理直线bt方程:所以直线ab方程:,又因为ab过焦点,故t在准线上.18.如图,已知直线l与半径为1的d相切于点c,动点p到直线l的距离为d,若 ()求点p的轨迹方程; ()若轨迹上的点p与同一平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 45807-2025共享经济术语
- 冰墩墩课件介绍
- 宣传委员竞选教学课件
- 冬季保健知识课件
- 宣传主题班会课件
- 冠心病防治科普知识
- 2025版拆墙工程施工许可证协议书合同范本
- 2025版工业园区包干制物业管理服务协议
- 二零二五年搬运工工伤免责保障合同模板
- 宝玉石加工技术课件
- 浙江国企招聘2025宁波慈溪市国有企业公开招聘公交驾驶员25人笔试参考题库附带答案详解版
- 2025年省国有资本运营控股集团有限公司人员招聘笔试备考试题及答案详解(名校卷)
- 2025年辅警招聘考试试题库完整答案
- 技术水平评价报告【范本模板】
- 宿州萧县乡镇事业单位招聘考试真题2024
- 2025至2030临床决策支持系统行业项目调研及市场前景预测评估报告
- 黑启动操作培训课件
- 肿瘤的健康科普
- 2025至2030中国清洁机器人市场经营效益与投融资发展状况报告
- 烟台万华并购匈牙利博苏化学公司研究报告
- 中医疼痛课件
评论
0/150
提交评论