




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、,复 变 函 数 与积分变换 电 子 课 件,1,目 录 第一讲 复数的代数运算及几何表示 第二讲 复数的乘幂与方根 区域 复变函数 第三讲 复变函数及极限与连续 第四讲 解析函数的概念及充要条件 第五讲 初等函数 第六讲 复积分的概念 柯西古萨基本定理 第七讲 复合闭路定理原函数与不定积分 第八讲 柯西积分公式 解析函数的高阶导数 解析函数和调和函数的关系 第九讲 复数项级数 幂级数,2,第十讲 泰勒级数 第十一讲 洛朗级数 第十二讲 孤立奇点 第十三讲 留数 第十四讲 留数在定积分计算上的应用 第十五讲 Fourier积分 Fourier变换 第十六讲 Fourier变换的性质 应用 卷积
2、 第十七讲 Laplace变换的概念 性质 第十八讲 Laplace变换的逆变换 卷积,3,前 言,在十六世纪中叶,G. Cardano (1501-1576)在研究 一元二次方程 时引进了复数。他发现 这个方程没有根,并把这个方程的两个根形式地表 为 。在当时,包括他自己在内, 谁也弄不清这样表示有什么好处。事实上,复数被 Cardano 引入后,在很长一段时间内不被人们所理 睬,并被认为是没有意义的,不能接受的“虚数”。 直到十七与十八世纪,随着微积分的产生与发展, 情况才有所好转。特别是由于 L.Euler的研究结果,,4,复数终于起了重要的作用。例如大家所熟知的Euler 公式 揭示了
3、复指数函数与三角函 数之间的关系。然而一直到C.Wessel (挪威.1745- 1818)和R.Argand (法国.1768-1822) 将复数用平面 向量或点来表示,以及 K. F.Gauss(德国1777-1855) 与W.R.Hamilton (爱尔兰1805-1865)定义复数 为一对有序实数后,才消除人们对复数真实性的长久 疑虑,“复变函数”这一数学分支到此才顺利地得到 建立和发展。 复变函数的理论和方法在数学、自然科学和工程技术,5,中有着广泛的应用,是解决诸如流体力学,电磁学, 热学弹性理论中平面问题的有力工具。 复变函数中的许多概念,理论和方法是实变函数在复 数领域的推广和
4、发展。,6,第一讲 复数的代数运算及几何表示,教学重点:1.复习复数的基本概念 2.计算有关复数的典型题 教学难点: 复球面 突破方法:精讲多练,7,1.概念 一对有序实数( )构成一个复数,记 为 .x,y分别称为Z的实部和虚部,记作 x=Re(Z),y=Im(Z), ,称 为 Z 的共轭 复数。 两个复数相等 他们的实部和虚部都相等 特别地, 与实数不同,一般说来,任意两个复数不能比较大小. 2 .四则运算 设,1.1复数及其代数运算,8,复数运算满足交换律,结合律和分配律: z1+z2=z2+z1 ; z1z2=z2z1 ; z1+(z2+z3)=(z1+z2)+z3 z1(z2z3)=
5、(z1z2)z3 ; z1(z2+z3)=z1z2+z1z3 3.共轭复数性质:,9,1.点表示,y,z(x,y),x,x,0,y,r,复平面,实轴,虚轴,1.2复数的几何表示,10,0,x,y,x,y,q,z=x+iy,|z|=r,2 向量表示,-复数z的辐角(argument),记作Arg z=q .,任何一个复数z0有无穷多个辐角,将满足,-p q0p 的q0 称为Arg z的主值, 记作q0=arg z .则,Arg z=q0+2kp =arg z +2kp (k为任意整数),-复数z的模,11,当 z = 0 时, | z | = 0, 而辐角不确定. arg z可由下列关系确定:,
6、说明:当 z 在第二象限时,,12,3.指数形式与三角形式,利用直角坐标与极坐标的关系: x = r cosq, y = r sinq, 可以将z表示成三角表示式:,利用欧拉公式 e iq = cosq + i sinq 得指数表示式:,例1 将下列复数化为三角表示式与指数表示式.,解,1),z在第三象限, 因此,因此,13,因此,练习:,写出 的辐角和它的指数形式。,解,2) 显然, r = | z | = 1, 又,14,4.复数形式的代数方程与平面几何图形,很多平面图形能用复数形式的方程(或不等式)来表 示; 也可以由给定的复数形式的方程(或不等式)来确定 它所表示的平面图形.,例2 将
7、通过两点z1=x1+iy1与z2=x2+iy2的直线用复数形式的方 程来表示.解 通过点(x1,y1)与(x2,y2)的直线可用参数方程表示为,因此, 它的复数形式的参数方程为,z=z1+t(z2-z1). (-t+),15,由此得知由z1到z2的直线段的参数方程可以写成z=z1+t(z2-z1). (0t1),取,得知线段,的中点为,例3 求下列方程所表示的曲线:,16,解:,设 z = x + i y , 方程变为,几何上, 该方程表示到点2i和-2的距离相等的点的轨迹, 所以方程表示的曲线就是连接点2i和-2的线段的垂直平分线, 方程为 y = - x , 也可用代数的方法求出。,17,2i,O,x,y,-2,y=-x,设 z = x + i y , 那么,可得所求曲线的方程为 y = -3 .,O,y,x,y=-3,18,5.复球面,N,19,x1,x2,x3,o,z(x,y),x,y,P(x1,x2,x3),x1,x2,x3,N(0,0,2r),除了复数的平面表示方法外, 还可以用球面上的点来表示复数.,对复平面内任一点z, 用直线将z与N相连, 与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030中国脱水设备行业发展研究与产业战略规划分析评估报告
- 2025至2030中国脂质调节剂行业市场深度研究及发展前景投资可行性分析报告
- 重磅资讯!盲盒行业的下一个增长点:城市记忆产品解析
- 2025至2030中国羊毛角蛋白行业市场深度研究及发展前景投资可行性分析报告
- 2025至2030中国网络访问控制软件行业市场深度研究及发展前景投资可行性分析报告
- 2025至2030中国网板行业深度研究及发展前景投资评估分析
- 2025至2030中国绿砂铸造行业产业运行态势及投资规划深度研究报告
- 2025至2030中国经导管二尖瓣修复装置行业产业运行态势及投资规划深度研究报告
- 人教版六年级上册数学提分复习计划
- 弹性排班制度在提升医院运营效率中的作用
- 【南通】2025年江苏省通州区西亭镇招聘民政协理员1人笔试历年典型考题
- 2025年商务英语(BEC)中级考试真题卷:商务英语模拟面试与应对策略试题
- 光伏电站安全管理课件
- 编辑校对员笔试试题及答案
- 广西玉林职业技术学院招聘教职人员考试真题2024
- 耳鼻喉护理教学查房
- 2025年七一党课-作风建设永远在路上学习教育党课
- 2025年高考数学全国二卷试题真题及答案详解(精校打印)
- 辽宁省文体旅集团所属两家企业招聘笔试题库2025
- 2025年江苏省惠隆资产管理有限公司招聘笔试参考题库含答案解析
- 消除“艾梅乙”医疗歧视-从我做起
评论
0/150
提交评论