




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、学科:数学 年级:八年级 课题:角的平分线性质 授课教师: 周邦益 学校: 启东市建新中学 邮编 :226221 电子邮件: 联系方式八年级上册人教2011课标版,12.3角的平分线的性质,知识回顾,1、角平分线的概念,一条射线,把一个角,分成两个相等的角,,这条射线叫做这个角的平分线。,知识回顾,2、点到直线距离:,从直线外一点,到这条直线的垂线段,的长度,,叫做点到直线的距离。,如图,是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗?,你能由上面的探究得出
2、作已知角的平分线的方法吗?,探究1:,E,角的平分线的作法,证明: 在ACD和ACB中 AD=AB(已知) DC=BC(已知) CA=CA(公共边) ACD ACB(SSS) CAD=CAB(全等三角形的 对应边相等) AC平分DAB(角平分线的定义),尺规作角的平分线,A,画法:,以为圆心,适当长为半径作弧,交于,交于,分别以,为圆心大于 1/2 的长为半径作弧两弧在的内部交于,作射线,射线即为所求,A,为什么OC是角平分线呢?,想一想:,已知:OM=ON,MC=NC。 求证:OC平分AOB。,证明:在OMC和ONC中, OM=ON, MC=NC, OC=OC, OMC ONC(SSS) M
3、OC=NOC 即:OC平分AOB,1平分平角AOB 2通过上面的步骤,得到射线OC以后,把它反向延长得到直线CD,直线CD与直线AB是什么关系? 3结论:作平角的平分线即可平分平角,由此也得到过直线上一点作这条直线的垂线的方法。,变式),将 AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?,可以看一看,第一条折痕是AOB的平分线OC,第二次折叠形成的两条折痕PD,PE是角的平分线上一点到AOB两边的距离,这两个距离相等.,折一折,探究2,角平分线的性质,已知:如图,OC是AOB的平分线,点P在OC上,PDOA,PEOB,垂足分别是
4、D,E。,求证:PD=PE,证明: PDOA,PEOB(已知) PDO=PEO=90(垂直的定义),在PDO和PEO中, PD=PE(全等三角形的对应边相等), PDO= PEO AOC= BOC OP=OP, PDO PEO(AAS),角的平分线上的点到这个角的两边的距离相等。,证明几何命题的一般步骤: 1、明确命题的已知和求证 2、根据题意,画出图形,并用数学符号表示已知和求证; 3、经过分析,找出由已知推出求证的途径,写出证明过程。,角平分线的性质,定理:角的平分线上的点到角的两边的距离相等,用符号语言表示为:,A,O,B,P,1,2, 1= 2 (或OP是平分BAC) PD OA ,P
5、E OB PD=PE (角的平分线上的点到角的两边的距离相等),推理的理由有三个,必须写完全,不能少了任何一个。,角平分线的性质,角的平分线上的点到角的两边的距离相等。,定理应用所具备的条件:,定理的作用:,证明线段相等。, 如图,AD平分BAC(已知), = ,( ),在角的平分线上的点到这个角的两边的距离相等。,BD CD,(),判断:,变式, 如图, DCAC,DBAB (已知), = ,( ),在角的平分线上的点到这个角的两边的距离相等。,BD CD,(), AD平分BAC, DCAC,DBAB (已知), = ,( ),在角的平分线上的点到这个角的两边的距离相等。,不必再证全等,思考
6、: 要在区建一个集贸市场,使它到公路,铁路距离相等且离公路,铁路的交叉处米,应建在何处?(比例尺 1:20 000),s,公路,铁路,解: 作夹角的角平分线OC,截取 OD=2.5cm ,D即为所求。,D,C,s,公路,铁路,变式,如图, OC是AOB的平分线, 又 _ PD=PE ( ),PDOA,PEOB,角的平分线上的点 到角的两边的距离相等,在OAB中,OE是它的角平分线,且EA=EB,EC、ED分别垂直OA,OB,垂足为C,D. 求证:AC=BD.,例题,变式,在ABC中, C=90 ,AD为BAC的平分线,DEAB,BC7,DE3. 求BD的长。,如图,在ABC中,C=90 AD是BAC的平分线,DEAB于E,F在AC上,BD=DF; 求证:CF=EB,拓展提升,这节课我们学习了哪些知识?,小 结,1、“作已知角的平分线”的尺规作图法;,2、角的平分线的性质: 111角的平分线上的点到角的两边的距离相等。, OC是AOB的平分线, 又 PDOA,PEOB PD=PE (角的平分线上的点 到角的两边距离相等).,几何语言:,,,4,3 . 如图,DEAB,DFBC,垂足分别是E,F, DE =DF, EDB= 60,则 EBF= 度,BE= 。,60,BF,4.如图,在ABC中,C=90,DEAB,1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 油锯安全操作规程
- 生态度假村租赁及服务协议范本
- 商业综合体场地房屋租赁及全面物业服务合同
- 跨境电商采购销售及仓储物流合同
- 餐饮行业厨师技能培训劳动合同模板
- 海洋工程安装工程保障险合同
- 水产养殖场场地租赁与养殖服务合同
- 堰塘漏水排查方案
- 水系清理维护方案
- 图形推理面试题及答案
- 新疆警察学院面试问题及答案
- 小学三到六年级全册单词默写(素材)-2023-2024学年译林版(三起)小学英语
- 铁岭市高校毕业生“三支一扶”计划招募笔试真题2022
- DL-T1474-2021交、直流系统用高压聚合物绝缘子憎水性测量及评估方法
- 水利安全生产风险防控“六项机制”右江模式经验分享
- 天然气泄漏事故演练方案及评估
- 《养老机构认知障碍照护专区设置与服务规范》
- 妇科炎症健康教育课件
- 儿科护理学(高职)全套教学课件
- 干眼门诊建设计划书
- MBR膜系统清洗方案
评论
0/150
提交评论