




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Elementary Tutorial,Prepared byDr. An Tran in collaboration withProfessor P. R. Heyliger Department of Civil Engineering Colorado State University Fort Collins, Colorado June 2003,Fundamentals of Linear Vibrations,Developed as part of the Research Experiences of Undergraduates Program on “Studies of
2、 Vibration and Sound” , sponsored by National Science Foundation and Army Research Office (Award # EEC-0241979). This support is gratefully acknowledged.,Fundamentals of Linear Vibrations,Single Degree-of-Freedom Systems Two Degree-of-Freedom Systems Multi-DOF Systems Continuous Systems,Single Degre
3、e-of-Freedom Systems,A spring-mass system General solution for any simple oscillator General approach Examples Equivalent springs Spring in series and in parallel Examples Energy Methods Strain energy C = damping matrix; K = stiffness matrix;P = force vector Note: Matrices have positive diagonals an
4、d are symmetric.,Undamped free vibrations,Zero damping matrix C and force vector P,Assumed general solutions:,Characteristic polynomial (for det =0):,Eigenvalues (characteristic values):,Characteristic equation:,Undamped free vibrations,Special case when k1=k2=k and m1=m2=m,Eigenvalues and frequenci
5、es:,Two mode shapes (relative participation of each mass in the motion):,The two eigenvectors are orthogonal:,Eigenvector (1) =,Eigenvector (2) =,Undamped free vibrations (UFV),For any set of initial conditions: We know A(1) and A(2), 1 and 2 Must find C1, C2, 1, and 2 Need 4 I.C.s,Single-DOF:,For t
6、wo-DOF:,UFV Example 1,Given:,No phase angle since initial velocity is 0:,From the initial displacement:,UFV Example 2,Now both modes are involved:,Solve for C1 and C2:,From the given initial displacement:,Hence,or,Note: More contribution from mode 1,Transformation of coordinates,Introduce a new pair
7、 of coordinates that represents spring stretch:,UFV model problem:,“inertially uncoupled”,“elastically coupled”,z1(t) = x1(t) = stretch of spring 1 z2(t) = x2(t) - x1(t) = stretch of spring 2 orx1(t) = z1(t) x2(t) = z1(t) + z2(t),Substituting maintains symmetry:,“inertially coupled”,“elastically unc
8、oupled”,Transformation of coordinates,We have found that we can select coordinates so that: Inertially coupled, elastically uncoupled, or Inertially uncoupled, elastically coupled. Big question: Can we select coordinates so that both are uncoupled?,Notes in natural coordinates:,The eigenvectors are
9、orthogonal w.r.t M: The modal vectors are orthogonal w.r.t K: Algebraic eigenvalue problem:,Transformation of coordinates,Governing equation:,Modal equations:,Solve for these using initial conditions then substitute into (*).,General approach for solution,We were calling “A” - Change to u to match M
10、eirovitch,Substitution:,Let,or,Known solutions,Transformation - Example,2)Transformation:,1)Solve eigenvalue problem:,So,As we had before. More general procedure: “Modal analysis” do a bit later.,Model problem with:,Response to harmonic forces,Model equation:,M, C, and K are full but symmetric.,F no
11、t function of time,Assume:,Substituting gives:,Hence:,Special case: Undamped system,Zero damping matrix C,Entries of impedance matrix Z:,For our model problem (k1=k2=k and m1=m2=m), let F2 =0:,Notes: 1) Denominator originally (-)(-) = (+). As it passes through w1, changes sign. 2) The plots give bot
12、h amplitude and phase angle (either 0o or 180o),Substituting for X1 and X2:,Multi-DOF Systems,Model Equation Notes on matrices Undamped free vibration: the eigenvalue problem Normalization of modal matrix U General solution procedure Initial conditions Applied harmonic force,Multi-DOF model equation
13、,Model equation:,Notes on matrices:,They are square and symmetric. M is positive definite (since T is always positive) K is positive semi-definite: all positive eigenvalues, except for some potentially 0-eigenvalues which occur during a rigid-body motion. If restrained/tied down positive-definite. A
14、ll positive.,Vector mechanics (Newton or D Alembert) Hamiltons principles Lagranges equations,We derive using:,Multi-DOF systems are so similar to two-DOF.,UFV: the eigenvalue problem,Matrix eigenvalue problem,Equation of motion:,Substitution of,in terms of the generalized D.O.F. qi,leads to,For mor
15、e than 2x2, we usually solve using computational techniques. Total motion for any problem is a linear combination of the natural modes contained in u (i.e. the eigenvectors).,Normalization of modal matrix U,Do this a row at a time to form U.,This is a common technique for us to use after we have sol
16、ved the eigenvalue problem.,We know that:,So far, we pick our eigenvectors to look like:,Instead, let us try to pick so that:,Then:,and, Let the 1st entry be 1,General solution procedure,For all 3 problems: Form Ku = w2 Mu(nxn system) Solve for all w2 and u U. Normalize the eigenvectors w.r.t. mass
17、matrix (optional).,Consider the cases of: Initial excitation Harmonic applied force Arbitrary applied force,Initial conditions,2n constants that we need to determine by 2n conditions,General solution for any D.O.F.:,Alternative: modal analysis,Displacement vectors:,UFV model equation:,n modal equati
18、ons:, Need initial conditions on h, not q.,Initial conditions - Modal analysis,Using displacement vectors:,As a result, initial conditions:,Since the solution of,And then solve,hence we can easily solve for,is:,Applied harmonic force,Driving force Q = Qocos(wt),Equation of motion:,Substitution of,le
19、ads to,Hence,then,Continuous Systems,The axial bar Displacement field Energy approach Equation of motion Examples General solution - Free vibration Initial conditions Applied force Motion of the base Ritz method Free vibration Approximate solution One-term Ritz approximation Two-term Ritz approximat
20、ion,The axial bar,Main objectives: Use Hamiltons Principle to derive the equations of motion. Use HP to construct variational methods of solution.,A = cross-sectional area = uniform E = modulus of elasticity (MOE) u = axial displacement r = mass per volume,Energy approach,For the axial bar:,Hamilton
21、s principle:,Axial bar - Equation of motion,Hamiltons principle leads to:,If area A = constant ,Since x and t are independent, must have both sides equal to a constant.,Separation of variables:,Hence,Fixed-free bar General solution,= wave speed,For any time dependent problem:,Free vibration:,EBC:,NB
22、C:,General solution:,EBC ,NBC ,Fixed-free bar Free vibration,are the eigenfunctions,For free vibration:,General solution:,Hence,are the frequencies (eigenvalues),Fixed-free bar Initial conditions,or,Give entire bar an initial stretch. Release and compute u(x, t).,Initial conditions:,Initial velocity
23、:,Initial displacement:,Hence,Fixed-free bar Applied force,or,Now, B.Cs:,From,B.C. at x = 0:,B.C. at x = L:,Hence,we assume:,Substituting:,Fixed-free bar Motion of the base,Using our approach from before:,Resonance at:,Hence,From,B.C. at x = 0:,B.C. at x = L:,Ritz method Free vibration,Start with Hamiltons principle after I.B.P. in time:,Seek an approximate solution to u(x, t): In time: harmonic function cos(wt) (w = wn) In space: X(x) = a1f1(x) where:a1 = constant to be determin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业物流供需管理办法
- 人员资源储备管理办法
- 人才服务基金管理办法
- 乡镇违法用地管理办法
- 企业备案立项管理办法
- 云浮银行公章管理办法
- 乐园游乐设施管理办法
- 信息设备接入管理办法
- 乡镇农村资产管理办法
- 代理记账提成管理办法
- 2025年山东中考语文试卷真题解读及复习备考指导
- 糖尿病酮症酸中毒护理问题和措施讲课件
- 2025年湖北高考政治试卷真题及答案详解(精校打印版)
- 中国PVB膜项目创业计划书
- 安徽交控集团财务有限公司招聘笔试题库2025
- 2024-2025学年度部编版二年级语文下学期期末试卷 (含答案)
- 劳务施工组织与管理方案
- 20以内的加法口算练习题5000题每页100题339
- 2025新人教版英语八上单词默写表(先鸟版)
- 海上沉桩施工技术规程及保障措施
- 2024年河南省方城县事业单位公开招聘教师岗笔试题带答案
评论
0/150
提交评论