




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2.2 直接证明与间接证明,(1)综合法:从题设的出发,运用一系列有 关作为推理的依据,逐步推演而得到要证明 的结论,这种证明方法叫做综合法.综合法的推理方向是由 到,表现为,综合法的解题步骤 用符号表示是:. 特点:“由因导果”,因此综合法又叫顺推法,已知条件,已确定真实的命题,求证,由因索果,结论,题设,充分条件,执果索因,已知,(2)分析法:分析法的推理方向是由到, 论证中步步寻求使其成立的,如此逐步归结到已知的 条件和已经成立的事实,从而使命题得证,表现为, 分析法的证题步骤用符号表示为. 特点:“执果索因”,因此分析法又叫逆推法或执果索因法。,1直接证明,2间接证明 假设原命题的结论
2、不成立,经过正确的推理,最后得 出矛盾,因此说明假设错误,从而证明了原命题成立 这样的证明方法叫反证法反证法是一种间接证明的 方法 (1)反证法的解题步骤:推演过程中 引出矛盾。 (2)反证法的理论依据是:原命题为真,则它的 为真,在直接证明有困难时,就可以转化 为证明它的成立。,否定结论,肯定结论,逆否命题,逆否命题,(3)反证法证明一个命题常采用以下步骤: 假定命题的结论不成立, 进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾, 由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的。 肯定原来命题的结论是正确的。即“反设归谬结论”,(4)一般情况下,有如下几
3、种情况的证题目常常采用反证法 第一,问题共有n种情况,现要证明其中的一种情况成立时, 可以想到用反证法把其它的n1种情况都排除,从而肯定这种 情况成立; 第二,命题是以否定命题的形式叙述的; 第三,命题用“至少”、“至多”的字样叙述的; 第四,当命题成立非常明显,而要直接证明所用的理论太少, 且不容易说明,而其逆命题又是非常容易证明的。,【基础自测】,A充分不必要条件 B必要不充分条件 C充要条件 D既不充分也不必要条件,C,D,192,用综合法证明数学命题,图2.2-1,【思路分析】用综合法,根据线面垂直的判定定理,只要证 AE与平面PBC内的两条相交直线垂直即可。,证明:(1)PA平面AB
4、C,PABC. 又AB是O的直径,BCAC 而PCAC=C,BC平面PAC. 又AE在平面PAC内,BCAE. PCAE,且PCBC=C, AE平面PBC.,【点评与感悟】证明直线与平面垂直的常用方法有:利用线面垂直的定义;利用线面垂直的判定定理;利用“若直线a直线b,直线a平面 , 则直线b平面 ”。,”。,用分析法证明数学命题,(07临沂月考)若a0,求证:,【思路分析】可用分析法。,综合运用综合法、分析法证明数学命题,已知:a3+b3=2,求证:a+b,【思路分析】本题直接证明命题较困难,宜用反证法。,【点评与感悟】正难则反。,高考创新题型预测: 考查与数列有关的新概念的及与旧知识整合的能力问题,(1)设 是7项的“对称数列”,其中 是等差数列,且 , 依次写出 的每一项;,(2)设Cn是49项的“对称数列”,其中C25,C26,.,C49,是首项为 1,公比为2的等比数列,求Cn各项的和S;,(3)设dn是100项的“对称数列”,其中d51,d52,.,d100是首项 为2,公差为3的等差数列求dn前n项的和Sn(n=1,2,.,100),解:(1)设数列bn的公
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年煤矿安全生产管理人员安全资格培训考试一通三防知识题库及答案
- 2025年手足口霍乱试题及答案
- 2025年四川遂宁公务员录用考试《行测》模拟题及答案
- 2025年新安全生产生产法知识题库及答案(共50题)
- 体育设备租赁行业标准化运营模式探索考核试卷
- 质量管理持续改进案例考核试卷
- 乐器行业质量监管体系构建考核试卷
- 2025年【低压电工】考试题及答案
- 2024年度吉林继续教育公需科目考试题库及答案
- 隐患排查与整改档案管理规范考核试卷
- 投标前合同协议书范本
- 房屋市政工程生产安全重大事故隐患排查表
- 焊接技术培训和考核试题及答案
- 海钓商业计划书
- 宁波2025年浙江宁波慈溪市机关事业单位招聘编外工作人员7人(三)笔试历年参考题库附带答案详解
- 施工进场施工方案
- 物业管理服务委托及费用结算协议
- 夏日嘉年华活动策划案
- 高标准农田建设项目验收技术方案
- 数学-黑龙江省哈尔滨市六校2024-2025学年高一上学期期末联考试题和答案
- 机械设备使用操作规程(三篇)
评论
0/150
提交评论