七年级数学下册 第六章 实数教案 (新版)新人教版_第1页
七年级数学下册 第六章 实数教案 (新版)新人教版_第2页
七年级数学下册 第六章 实数教案 (新版)新人教版_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、实数一、教学目标知识与技能1、了解无理数和实数的概念.2、会对实数按照一定的标准进行分类,培养分类能力。3. 知道实数和数轴上的点一一对应,能估算无理数的大小。教学重点:正确理解实数的概念。教学难点:知道实数和数轴上的点一一对应,能估算无理数的大小。教学方法:引导、探究、归纳二、教学过程:环节一、复习引入:1、,0.1,3.14,1.137,0,18,12,0.,中,正整数有 ,负整数有 ,整数有 正分数有 ,负分数有 ,有理数有 。2、用计算器计算= ,= 。 环节二、新课:1、无限不循环小数叫做无理数。2、有理数和无理数统称为实数。3、实数与数轴上的点一一对应。例:把下列各数在数轴上表示:

2、2,0,2,概括:数轴上的点与实数是 的。也就是说,数轴上的任一点必定表示一个 数(包括 数和 数);反过来,每一个实数( 数和 数)也都可以用数轴上的点来表示。环节三、分层练习A组1、,0.1,3.14,1.137,0,18,12,0.,中,有理数有 ,无理数有 ,实数有 。2、填空a-a2.53.判断下列说法是否正确,不对的请举例说明。无限小数都是无理数。( )举例: 带根号的数都是无理数。( )举例: 实数都是有理数。( ) 举例: 实数都是无理数。( )举例: 有理数都是实数( )举例: 两个有理数相加结果仍是有理数。( )举例: 两个无理数相加结果仍是无理数。( )举例: 两个实数相加结果仍是实数。( )举例: 两个数相除,如果不管添多少位小数,永远都除不尽,那么结果一定是一个无理数。( )举例: 任意一个无理数的绝对值是正数. ( )举例: 4、1)试估计与的大小关系 2)比较下列各组数中两个实数的大小:(1); (2) B组1、数a、b在数轴上的位置如图所示,化简:.环节四、小结:1、有理数的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论