中考数学专题复习第9章统计与概率第24讲概率_第1页
中考数学专题复习第9章统计与概率第24讲概率_第2页
中考数学专题复习第9章统计与概率第24讲概率_第3页
中考数学专题复习第9章统计与概率第24讲概率_第4页
中考数学专题复习第9章统计与概率第24讲概率_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第24课概率基础知识的归纳归纳1:概率的相关概念1.识别事件(1)不可避免的事件:在特定条件下进行重复试验时,每次试验中会发生的事件。不可能事件:有些事件不会在每次实验中发生,这些事件被称为不可能事件。2.随机事件在特定条件下可能发生也可能不发生的事件称为随机事件。3.概率的概念通常,对于随机事件,我们描述其发生概率的值,被称为随机事件的概率,它被记录为4.频率和概率之间的关系当我们重复大量实验时,事件的频率逐渐稳定在某个值,该频率的稳定值作为该事件发生概率的估计值。方法归纳(1)不可避免事件是指在一定条件下必须发生的事件;2不可能事件是指在一定条件下不能发生的事件;不确定事件是指在一定条件下

2、可能发生或不发生的事件。归纳2:概率的计算1.公式法一般来说,如果实验中有可能的结果,并且它们出现的概率相等,如果事件包含其中一个结果,则事件的概率为=2.列表方法当一个测试涉及两个因素(比如掷两个骰子)并且有许多可能的结果时,为了列出所有可能的结果而不遗漏,通常采用列表方法。3.画一个树形图当一个测试涉及三个或更多的因素时(比如从三个口袋里拿球),这个列表是不方便的。为了列出所有可能的结果而不遗漏,通常使用树形图。4.几何概率一般情况下,概率是通过几何图形的面积比来计算的,计算公式为=,【方法归纳】要解决这类问题,不仅要掌握概率的计算方法,还要掌握几何图形的面积计算。根据概率的方法,找到两点

3、:(1)所有可能情况的总数;符合条件的病例数;两者之比就是它发生的概率。常见问题分析问题1。概率的简单计算例1(深圳,2016)数学老师将全班分成7组,采用随机抽签的方式进行小组合作学习确定一个小组开展示范活动。那么第三组被抽取的概率是()A.不列颠哥伦比亚省回答答【分析】答案可以根据概率得出,概率是情境数与情境总数的比值。解答解答:第三组被抽中的概率是例2(梅州,2016)在一个不透明的口袋里,除了颜色不同外,还有几个相同的小球。如果口袋里有三个红色的球,一个球是红色的概率是,然后口袋里有_ _ _ _ _ _ _ _ _个球。答案 15【分析】假设口袋里有X个小球,可以根据概率公式得到,然

4、后利用比例性质得到X。解决方案解决方案:口袋里有X个小球。根据问题的意思,x=15,因此,口袋里有15个小球。通过类比1.(湘西自治州,2016)在一个不透明的口袋里有6个红球和2个绿球。这些球不仅是彩色的,没有其他的区别,一个球是随机地从这个包里拿出来的,碰到红色球的概率是()A.公元前1世纪回答答分析首先计算球的总数,然后根据概率公式得到触到红色球的概率。解决方法解决方法:袋子里有6个红色的球和2个绿色的球。总共有8个球。碰到红色球的概率是2.(大庆,2016)一个盒子里有2个红色的球和3个白色的球,除了颜色不同,其他都一样。现在你可以把他们带走了2个球,得到一个红色球和一个白色球的概率是

5、()A.不列颠哥伦比亚省答案 C【分析】首先根据问题的含义画出树形图,然后从树形图中得到所有相等的可能结果和红球和白球的情况,然后用概率公式求解得到答案。解决方案解决方案:绘制树形图:*有20种相等的可能结果,有12种情况,其中一个红色球和一个白色球被获得。得到一个红色球和一个白色球的概率是:3.(泰州,2016)纹理均匀的骰子六面分别刻有1-6个点,掷出两次骰子即可起身两点在一边,下列事件中最有可能的是()A.所有的分数都相等。点数之和是奇数C.点数总和小于13 D。点数总和小于2答案 C【分析】首先,画一个树形图来显示36个可能的结果,然后找出每个事件的结果。然后分别计算它们的概率,然后比

6、较概率。解决方案解决方案:绘制如下树形图:有36种相等的可能结果,其中偶数点的结果数为9,奇数点和的结果数为18,点数小于13的结果数为36,点数小于2的结果数为0。所以所有点都是偶数的概率=,点的和是奇数的概率=,点数总和小于13的概率=1,点数总和小于2的概率=0,因此,最有可能出现的情况是点数总和小于13。4.(海南,2016)三张外观相同的卡片分别标有数字1、2和3,一次随机抽取两张卡片。这两张卡片上的数字小于3的概率是()A.不列颠哥伦比亚省回答答分析首先,根据问题的意思画一个树形图,然后从树形图和两张卡片上的结果中得到所有可能的结果当数字都小于3时,可以用概率公式得到答案。解决方案

7、解决方案:绘制树形图:*有6种可能的结果,两张卡片上的数字都不到3。有两种情况。:两张卡片上的数字都不到3。概率=。5.(茂名,2016)从标有数字3、2、1、0、1、2和3的七张卡片中,随机抽取一张卡片,抽取卡片上数字的绝对值不小于2的概率为()A.不列颠哥伦比亚省答案 D【分析】从7张标有数字-3、-2、-1、0、1、2和3的卡片中,随机选择一张。有四种情况,抽牌上数字的绝对值不小于2,直接用概率公式就可以得到答案。解决方案解决方案:*在标有数字-3、-2、-1、0、1、2、3的七张卡中,随机抽取一张卡片,有四种情况,其中抽取的卡片上的数字的绝对值不小于2。随机选择一张牌,抽出的牌上数字的

8、绝对值不小于2的概率为:6.(甘孜州,2016)投掷质地均匀、落地后面朝上的硬币的概率为。回答【分析】投掷质地均匀的硬币时,有两种可能的情况,可以计算面朝上的概率。解决方法解决方法:扔一枚质地均匀的硬币,其他可能的情况是:面朝上,反面朝上,p(面朝上)=7.(甘孜州,2016)在一个不透明的袋子里,有7个颜色相同的小球,除了颜色,包括红色的球有2个黑球和5个黑球。如果放入m个黑色的球并均匀摇动,此时,随机发现一个球是黑色的。如果概率等于,m的值为。答案 3【分析】按概率=病例数与病例总数之比,根据随机球是黑球的概率,它等于可以得到方程,然后就可以得到答案。解决方案解决方案:根据问题的含义,解决

9、方法是:m=3。问题2。用树形图或列表法找出概率例4(黄冈,2016)小明和小林是三河中学九年级的同学,他们于4月份独立入学在考试中,他们都提前被同一所高中录取,并将被分配到三个班级。他们希望可以再次成为同学。(1)请通过绘制树形图或枚举列出所有可能的结果;(2)寻找两个人再次成为同学的可能性。分析 (1)画一个树形图或枚举法来得到所有可能的结果;从(1)中,我们可以知道两个人再次成为同学的概率。解决方案解决方案:(1)绘制如下树形图:根据树形图,可能的结果是AA、AB、AC、BA、BB、BC、CA、CB、CC;(2)从(1)可以看出,两个人再次成为同学的概率是=通过类比8.(梅州,2016)

10、我市一所学校发起了以“中国梦”为主题的摄影比赛,要求每位学生付费。一件作品。50个入选项目的得分(单位:分)如下:等级成就(以m表示)频率频率A90 m 100x0.08B80 m 9034yCm 80120.24总数501请根据上表提供的信息回答以下问题:(1)表中的数值为_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _。(直接填写结果)(2)在本条目中获得A级的学生依次用A1、A2和A3表示。现在学校已经决定从这次入学考试中得了A的学生中随机选择两个学生来谈论他们的入学经历,这是正确的。学

11、生A1和A2的概率是_ _ _ _ _ _ _ _ _ _ _ _ _ _。(直接填写结果)【分析】(1)利用频率(数)率分布表,从频率和中减去B、C级的频率,得到X值,然后用B级的频率除以总数,得到Y值;(2)画一个树形图来显示所有12种可能的结果,然后找出刚刚画给学生A1和A2的结果结果的个数,然后根据概率公式来求解。解解:(1)x=501234=4,y=y=0.68;因此,答案是4,0.68;(2)绘制如下树形图:有12种相同的可能结果,其中刚刚画给学生A1和A2的结果数是2。因此,画学生A1和A2的概率是=,因此,答案是4,0.68;9.(茂名,2016)有四张不透明的卡片,正面有数字

12、1、2、3和4,这些都是除了数字他们都一样。现在把它们均匀地洗干净。(1)随机选择一张卡片,计算抽数字“2”的概率;(2)随机选一张牌,然后不要放回去,然后随机选一张牌,请使用列表或绘制树形图的方法。得到了第一次画数字“1”和第二次画数字“2”的概率。分析 (1)根据概率公式直接回答;(2)列出树形图,找出所有可能的结果,然后找出第一次画的数字“1”和第二次画的数字单词“2”的数字可以用来计算它的概率。解决方案解决方案:(1)四张不透明卡片,正面有数字1、2、3和4。随机抽一张牌,找出抽数字“2”的概率=;(2)行树形图是:从树形图可以看出,第一次画数字“1”和第二次画数字“2”的概率是=。巩

13、固和提高自己1.(广州,2016)密码锁的密码由三个数字组成,每个数字为0-9第一,只有当三个数字与设定的密码和顺序完全相同时,锁才能打开。如果你忘记了,锁定密码的最后一个数字,那么一次打开密码的概率是()A.不列颠哥伦比亚省回答答【分析】最后一个数字可以是0到9中的任意一个。共有十种情况,其中只有一种解锁情况,可以用概率公式计算。解决方案解决方案:共有10个数字。有10种可能的选择。*只有一种情况下可以一次打开密码。一次打开密码的概率是。2.(广东,2014)一个不透明的布袋里装着7个颜色不同的球,包括3个红色球和4个白色球。我从布袋中随机拉出一个球,我拉出的球是红色球的概率是()A.不列颠

14、哥伦比亚省回答乙【分析】可根据概率公式直接求解。解决方案解决方案:共有7个颜色不同的球,包括3个红色的球。从布袋中随机挑出一个球,球是红色的概率=0。3.(广东,2015)老师和小明玩数学游戏。老师拿出一个不透明的口袋,里面有三张卡片,分别标有数字1、2和3。除了数字以外,卡片都是一样的。老师让小明随机选择一张卡片两次,计算两次卡片上的数字的乘积为奇数的概率,于是小明过去常常画一棵树。这种绘画方法寻求两次绘画卡片的所有可能结果。下图是小明画的正确的树形图分钟。(1)完成小明绘制的树形图;(2)找出小明在卡片上画了两次的数的乘积是奇数的概率。【分析】(1)根据问题的含义,这个问题可以放回实验中,

15、从而可以完成树形图;(2)从树形图可以看出,所有可能的结果和小明在卡片上画了两次的数字的乘积是奇数,然后用概率公式得到答案。【解答】解答:(1)完成小明绘制的树形图;(2)有9种可能的结果,有4种情况是小明在卡片上画了两次的数的乘积是奇数。小明在卡片上画了两次的数字的乘积是奇数的概率是:4.(广东,2012)有三张卡片,正面分别写着数字-2,-1和1,背面相同。将这三张卡的背面均匀地洗干净,然后随机选择一张卡,取正面的数字作为的值。把卡片放回去洗干净,然后从三张卡片中随机选择一张,取正数作为。两次的结果记录如下(1)用树形图或列表的方法来表达所有可能的结果;(2)寻找分数有意义出现的概率;(3)简化分数;找出分数的值是整数的概率。分析(1)列出所有可能的情况;(2)发现x和y不相等且彼此相反是使分数有意义的事例数,概率是可以得到的;(3)将原始公式分成相等的部分,利用相

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论