版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、南通市第二中学,上课教师:丁玉娟,椭圆的简单几何性质,复习:,1.椭圆的定义:,到两定点F1、F2的距离之和为常数(大于|F1F2 |)的动点的轨迹叫做椭圆。,2.椭圆的标准方程是:,3.椭圆中a,b,c的关系是:,a2=b2+c2,当焦点在X轴上时,当焦点在Y轴上时,F1,F2,A1,B1,A2,B2,思考:观察上面两个图,并说出椭圆有什么特征?,2、对称性:关于x轴,y轴,原点都对称,二、椭圆 简单的几何性质,1、范围:由 1, 1 得 -axa, -byb 知 椭圆落在x=a,y= b组成的矩形中,椭圆的对称性,椭圆的对称性,3、椭圆的顶点,令 x=0,得 y=?,说明椭圆与 y轴的交点
2、? 令 y=0,得 x=?说明椭圆与 x轴的交点?,*顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。 *长轴、短轴:线段A1A2、B1B2分别叫做椭圆的长轴和短轴。 a、b分别叫做椭圆的长半轴长和短半轴长。,根据前面所学有关知识画出下列图形,(1),(2),A1,B1,A2,B2,B2,A2,B1,A1,4、椭圆的离心率,离心率:椭圆的焦距与长轴长的比:,叫做椭圆的离心率。,1离心率的取值范围:,2离心率对椭圆形状的影响:,0e1,1)e 越接近 1,c 就越接近 a,从而 b就越小,椭圆就越扁 2)e 越接近 0,c 就越接近 0,从而 b就越大,椭圆就越圆,3e与a,b的关系:,|x|
3、 a,|y| b,关于x轴、y轴成轴对称;关于原点成中心对称,(a,0)、(-a,0)、(0,b)、(0,-b),(c,0)、(-c,0),长半轴长为a,短半轴长为b. ab,a2=b2+c2,|x| a,|y| b,关于x轴、y轴成轴对称;关于原点成中心对称,(a,0)、(-a,0)、(0,b)、(0,-b),(c,0)、(-c,0),长半轴长为a,短半轴长为b. ab,a2=b2+c2,|x| b,|y| a,同前,(b,0)、(-b,0)、(0,a)、(0,-a),(0 , c)、(0, -c),同前,同前,同前,例1已知椭圆方程为16x2+25y2=400,它的长轴长是: 。短轴长是:
4、 。 焦距是: 。 离心率等于: 。 焦点坐标是: 。顶点坐标是: 。 外切矩形的面积等于: 。,10,8,6,80,解题的关键:1、将椭圆方程转化为标准方程 明确a、b,2、确定焦点的位置和长轴的位置,已知椭圆方程为6x2+y2=6,它的长轴长是: 。短轴长是: 。 焦距是: .离心率等于: 。 焦点坐标是: 。顶点坐标是: 。 外切矩形的面积等于: 。,2,练习1.,例2过适合下列条件的椭圆的标准方程: (1)经过点 、 ; (2)长轴长等于 ,离心率等于 ,解:(1)由题意, ,又长轴在 轴上,所以,椭圆的标准方程为 ,(2)由已知, , , , , 所以椭圆的标准方程为 或 ,例3.已知椭圆的中心在原点,焦点在坐标轴上,长轴是短轴的三倍,且椭圆经过点P(3,0),求椭圆的方程。,答案:,分类讨论的数学思想,小结:,本节课我们学习了椭圆的几个简单几何性质:范围、对称性、顶点坐标、离心率等概念及其几何意义。了解了研究椭圆的几个基本量a,b,c,e及顶点、焦点、对称中心及其相互之间的关系,这对我们解决椭圆中的相关问题有很大的帮助,给我们以后学习圆锥曲线其他的两种曲线扎实了基础。在解析几何的学习中,我们更多的是从方程的形式这个角度来挖掘题目中的隐含条件,需要我们认识并熟练掌握数与形的联系。在本节课中,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 33225-2025风能发电系统基于机舱风速计法的风力发电机组功率特性测试
- GB/T 46315-2025工业互联网平台设备健康管理规范
- GB/T 17680.7-2025核电厂应急准备与响应准则第7部分:场内应急设施功能与特性
- 休闲用品外包合同范本
- 劳务派遣雇佣合同范本
- 北京搬家公司合同范本
- 合同延期履行协议范本
- 劳动合同赔偿支付协议
- 农村林木收购合同范本
- 合伙货车转让合同范本
- 2025江苏盐城市住房和城乡建设局部分直属事业单位招录政府购买服务用工人员4人考试参考试题及答案解析
- 湖北省腾云联盟2026届高三10月联考历史(含答案)
- 7.1《集体生活成就我》课件- 2025-2026学年统编版道德与法治 七年级上册
- 基于Labview的温度实时数据采集系统设计 重16.1%-11390字
- 出行考察合同(标准版)
- 2025年扳道员职业技能鉴定参考试题库50题(含答案)
- (一检)泉州市2026届高中毕业班质量监测(一)语文试卷(含标准答案)
- 跨境租赁模式创新-洞察及研究
- 专利实施许可合同简单版样板4篇
- SMS安全管理体系培训课件
- 2025小学科学实验室实验课时安排工作计划范文
评论
0/150
提交评论