九年级数学 27.2.1相似三角形的判定(3) 学案 人教新课标版_第1页
九年级数学 27.2.1相似三角形的判定(3) 学案 人教新课标版_第2页
九年级数学 27.2.1相似三角形的判定(3) 学案 人教新课标版_第3页
九年级数学 27.2.1相似三角形的判定(3) 学案 人教新课标版_第4页
九年级数学 27.2.1相似三角形的判定(3) 学案 人教新课标版_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、27.2.1 相似三角形的判定三学习目标:掌握“两组对应边的比相等,且夹角相等,两个三角形相似” 能够运用三角形相似的条件解决简单的问题重点:三角形相似的判定方法难点:三角形相似的判定方法的运用一基础知识:1学过的三角形相似的判定方法有: 2下列所给的条件中,能确定相似的有( )(1)两个半径不相等的圆;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等边三角形;(5)所有的等腰梯形;(6)所有的正六边形A3个 B4个 C5个 D6个3已知四边形ABCD和四边形A1B1C1D1相似,四边形ABCD的最长边和最短边的长分别是10cm和4cm,如果四边形A1B1C1D1的最短边的长是6cm

2、,那么四边形A1B1C1D1中最长的边长是多少? 二探究新知:1两组对应边的相等,且夹角相等,两个三角形全等。猜想:两组对应边的比相等,且夹角相等,两个三角形相似吗?2请画两个三角形,要求:ABC中, AB=4,AC=6, A= 60DEF中DE=2,DF=3,D= 60,比一比两个三角形相似吗?证明思路:三应用练习:1、已知ABC和 ABC,根据下列条件判断它们是否相似.(1)A=120,AB=7cm,AC=14cm, A=120,AB=3cm,AC=6cm;(2) A45,AB=12cm, AC=15cm A45,AB16cm,AC20cm2、判断图中AEB和FEC是否相似? 543036

3、45EAFCB3.在正方形ABCD中,E为AD上的中点, F是AB的四分一等分点,连结EF、EC;AEF与DCE是否相似?说明理由.4、已知:如图,BD、CE是ABC的高, 试说明 ADEABC。ABCDE27.2.1 相似三角形的判定(四)一、学习目标1掌握“两角对应相等,两个三角形相似”的判定方法2能够运用三角形相似的条件解决简单的问题二、重点、难点1重点:三角形相似的判定方法3“两角对应相等,两个三角形相似”2难点:三角形相似的判定方法3的运用三、知识链接(1)我们已学习过哪些判定三角形相似的方法?4如图,ABEFCD,CD=4,AB=9,若梯形CDEF与梯形EFAB相似,求EF的长5如

4、图,一个矩形ABCD的长AD= a cm,宽AB= b cm,E、F分别是AD、BC的中点,连接E、F,所得新矩形ABFE与原矩形ABCD相似,求a:b的值 (:1)1下列说法正确的是( )A所有的平行四边形都相似 B所有的矩形都相似C所有的菱形都相似 D所有的正方形都相似2已知四边形ABCD与四边形A1B1C1D1相似,且A1B1:B1C1:C1D1:D1A1=7:8:11:14,若四边形ABCD的周长为40,求四边形ABCD的各边的长3在比例尺为110 000 000的地图上,量得甲、乙两地的距离是30 cm,求两地的实际距离四、巩固练习1如图,ABCAED, 其中DEBC,找出对应角并写

5、出对应边的比例式2如图,ABCAED,其中ADE=B,找出对应角并写出对应边的比例式 3 、已知:梯形ABCD中,ADBC,EFBC,AE=FC,求:AE的长。 “两角对应相等,两个三角形相似”的判定方法五、例题讲解例1(补充)如图ABCDCA,ADBC,B=DCA(1)写出对应边的比例式;(2)写出所有相等的角;(3)若AB=10,BC=12,CA=6求AD、DC的长分析:可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素对于(3)可由相似三角形对应边的比相等求出AD与DC的长 解:例2(补充)如图,在ABC中,DEBC,AD=EC,DB=1cm,AE=4cm,BC=5cm,求

6、DE的长 分析:由DEBC,可得ADEABC,再由相似三角形的性质,有,又由AD=EC可求出AD的长,再根据求出DE的长解:六、课堂练习1(选择)下列各组三角形一定相似的是( )A两个直角三角形 B两个钝角三角形 C两个等腰三角形 D两个等边三角形 2(选择)如图,DEBC,EFAB,则图中相似三角形一共有( )A1对 B2对 C3对 D4对3、如图,ABEFCD,图中共有 对相似三角形,写出来并说明理由;4如图,在ABCD中,EFAB,DE:EA=2:3,EF=4,求CD的长 七、当堂检测1如图,ABCAED, 其中DEBC,写出对应边的比例式2如图,ABCAED,其中ADE=B,写出对应边

7、的比例式 3如图,DEBC,(1)如果AD=2,DB=3,求DE:BC的值;(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长4、如图,小明在打网球时,使球恰好能打过网,而且落在离网5米的位置上,求球拍击球的高度h(设网球是直线运动) 1弦AB和CD相交于o内一点P,求证:PAPB=PCPD分析:要证PAPB=PCPD,需要证,则需要证明这四条线段所在的两个三角形相似由于所给的条件是圆中的两条相交弦,故需要先作辅助线构造三角形,然后利用圆的性质“同弧上的圆周角相等”得到两组角对应相等,再由三角形相似的判定方法3,可得两三角形相似、ABCDPO2 已知:如图,矩形ABCD中,

8、E为BC上一点,DFAE于F,若AB=4,AD=5,AE=6,求DF的长分析:要求的是线段DF的长,观察图形,我们发现AB、AD、AE和DF这四条线段分别在ABE和AFD中,因此只要证明这两个三角形相似,再由相似三角形的性质可以得到这四条线段对应成比例,从而求得DF的长由于这两个三角形都是直角三角形,故有一对直角相等,再找出另一对角对应相等,即可用“两角对应相等,两个三角形相似”的判定方法来证明这两个三角形相似五、课堂练习1 、填一填(1)如图3,点D在AB上,当 时, ACDABC。(2)如图4,已知点E在AC上,若点D在AB上,则满足 条件 ,就可以使ADE与原ABC相似。2已知:如图,1

9、=2=3,求证:ABCADE3. 如图,ABC中, DEBC,EFAB,试说明ADEEFC. AEFBCD 4下列说法是否正确,并说明理由(1)有一个锐角相等的两直角三角形是相似三角形;(2)有一个角相等的两等腰三角形是相似三角形六、作业1 、图1中DEFGBC,找出图中所有的相似三角形。2 、图2中ABCDEF,找出图中所有的相似三角形。FABCDGE图 1AB图 2CFDEO3 、在ABC和ABC中,如果A80,C60,A80,B40,那么这两个三角形是否相似?为什么?4 、已知:如图,ABC 的高AD、BE交于点F求证:5已知:如图,BE是ABC的外接圆O的直径,CD是ABC的高(1)求证:ACBC=BECD; (2)若CD=6,AD=3,B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论