《高分子化学》第5章 离子聚合课件_第1页
《高分子化学》第5章 离子聚合课件_第2页
《高分子化学》第5章 离子聚合课件_第3页
《高分子化学》第5章 离子聚合课件_第4页
《高分子化学》第5章 离子聚合课件_第5页
已阅读5页,还剩62页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高分子化学,1,学习交流PPT,第五章 离 子 聚 合,离子聚合的理论研究开始于五十年代 1953年,Ziegler在常温低压下制得PE 1956年,Szwarc发现了“活性聚合物” 离子聚合有别于自由基聚合的特点:,根本区别在于聚合活性种不同 离子聚合的活性种是带电荷的离子:,5.1 引言,碳阳离子 碳阴离子,5,通常是,2,学习交流PPT,离子聚合对单体有较高的选择性,带有1,1-二烷基、烷氧基等推电子基的单体才能进行阳离子聚合 具有腈基、羰基等强吸电子基的单体才能进行阴离子聚合 羰基化合物、杂环化合物,大多属离子聚合,3,学习交流PPT,聚合条件苛刻,微量杂质有极大影响,聚合重现性差 聚

2、合速率快,需低温聚合,给研究工作造成困难 反应介质的性质对反应也有极大的影响,影响因素复杂,原因,聚合机理和动力学研究不如自由基聚合成熟,4,学习交流PPT,5.2 阳离子聚合,到目前为止,对阳离子聚合的认识还不很深入 原因: 阳离子活性很高,极易发生各种副反应,很难获得高分子量的聚合物 碳阳离子易发生和碱性物质的结合、转移、异构化等副反应构成了阳离子聚合的特点 引发过程十分复杂,至今未能完全确定 目前采用阳离子聚合并大规模工业化的产品只有丁基橡胶,5,学习交流PPT,1. 阳离子聚合单体,具有推电子基的烯类单体原则上可进行阳离子聚合,推电子基团使双键电子云密度增加,有利于阳离子活性种进攻 碳

3、阳离子形成后,推电子基团的存在,使碳上电子云稀少的情况有所改变,体系能量有所降低,碳阳离子的稳定性增加,称为 反离子,从两方面考虑:,6,学习交流PPT,质子对碳碳双键有较强的亲合力 增长反应比其它副反应快,即生成的碳阳离子有适当的稳定性,对单体种类进行讨论 (可由热焓H判断):,能否聚合成高聚物,还要求:,烯烃,无取代基,不易极化,对质子亲和力小,不能发生阳离子聚合,质子亲和力较大,有利于反应 但一个烷基的供电性不强,Rp不快;仲碳阳离子较活泼,容易重排,生成更稳定的叔碳阳离子,H( kJ/mol) 640,757 791,7,学习交流PPT,两个甲基使双键电子云密度增加很多,易与质子亲合,

4、 820 kJ / mol 生成的叔碳阳离子较稳定,可得高分子量的线型聚合物,故丙烯、丁烯阳离子聚合只能得到低分子油状物,亚甲基上的氢,受四个甲基的保护,不易夺取,减少了重排、支化等副反应 是唯一能进行阳离子聚合的-烯烃,8,学习交流PPT,烷基乙烯基醚,诱导效应使双键电子云密度降低,氧的电负性较大 共轭效应使双键电子云密度增加,占主导地位,p- 共轭,共振结构使形成的碳阳离子上的正电荷分散而稳定:,能够进行阳离子聚合,9,学习交流PPT,共轭烯烃 如;St,-MeSt,B,I 电子的活动性强,易诱导极化,既能阳离子聚合,又能阴离子聚合 但聚合活性远不如异丁烯、乙烯烷基醚,工业很少进行这类单体

5、的阳离子聚合,引发剂生成阳离子,引发单体生成碳阳离子 电荷转移引发,即引发剂和单体先形成电荷转移络合物而后引发,2. 阳离子聚合引发体系及引发作用 阳离子聚合的引发剂都是亲电试剂,即电子接受体,阳离子聚合的引发方式:,10,学习交流PPT,质子酸引发 质子酸包括: H2SO4,H3PO4,HClO4, CF3COOH,CCl3COOH,酸要有足够的强度产生H,故弱酸不行 酸根的亲核性不能太强,否则会与活性中心结合成共价键而终止,如,质子酸先电离产生H,然后与单体加成形成 引发活性中心 活性单体离子对,条件,11,学习交流PPT,HSO4 H2PO4的亲核性稍差,可得到低聚体 HClO4,CF3

6、COOH,CCl3COOH的酸根较弱,可生成高聚物,氢卤酸的X亲核性太强,不能作为阳离子聚合引发剂,如HCl引发异丁烯,不同质子酸的酸根的亲核性不同,12,学习交流PPT,Lewis酸引发,Lewis酸包括: 金属卤化物: BF3 , AlCl3, SnCl4 , TiCl4, SbCl5, PCl5, ZnCl2 金属卤氧化物: POCl3,CrO2Cl,SOCl2,VOCl3,绝大部分Lewis酸都需要共(助)引发剂,作为质子或碳阳离子的供给体,F-C反应中的各种金属卤化物,都是电子的接受体,称为Lewis酸 从工业角度看,是阳离子聚合最重要的引发剂,13,学习交流PPT,析出质子的物质:

7、H2O,ROH,HX,RCOOH 析出碳阳离子的物质:RX,RCOX,(RCO)2O,如:无水BF3不能引发无水异丁烯的聚合,加入痕量水,聚合反应立即发生:,共引发剂有两类:,引发剂-共引发剂络合物,14,学习交流PPT,引发剂和共引发剂的不同组合,其活性也不同 引发剂的活性与接受电子的能力, 即酸性的强弱有关 BF3 AlCl3 TiCl4 SnCl4 共引发剂的活性视引发剂不同而不同 如异丁烯聚合,BF3为引发剂,共引发剂的活性: 水 :乙酸 :甲醇 50 :1. 5 :1,对于析出碳阳离子的情况:,15,学习交流PPT,对于多数聚合,引发剂与共引发剂有一最佳比,在此条件下,Rp最快,分子

8、量最大,原因: 过量的共引发剂,如水是链转移剂,使链终止,分子量降低,16,学习交流PPT,水过量可能生成氧翁离子,其活性低于引发剂共引发剂络合物,故Rp下降,氧翁离子,活性较低,其它物质引发 其它物质包括:I2,高氯酸乙酸酯,氧翁离子,17,学习交流PPT,高氯酸乙酸酯可能是通过酰基正离子与单体加成引发,电离幅射引发,可形成单体阳离子自由基,经偶合形成双阳离子活性中心。 幅射引发最大特点:碳阳离子活性中心没有反离子存在,电荷转移络合物引发,18,学习交流PPT,链引发 以引发剂Lewis酸(C)和共引发剂(RH)为例,单体(供电体)和适当受电体生成电荷转移络合物,在热作用下,经离解而引发 如

9、乙烯基咔唑和四腈基乙烯(TCE)是一例:,3 阳离子聚合机理,电荷转移络合物,19,学习交流PPT,引发活化能低, 8. 4 21 kJ/mol,故引发速率很快 (与自由基慢引发Ed = 105 150 kJ/mol 截然不同),若第二步是速率控制反应,若是第一步是速率控制反应,则引发速率为,此时,引发速率与单体浓度无关,特点:,20,学习交流PPT,链增长 单体不断插入到碳阳离子和反离子形成的离子对中间进行链增长,增长活化能与引发活化能一样低,速率快 增长活性中心为一离子对,结合的紧密程度对聚合速率和分子量有一定影响 单体插入聚合,对链节构型有一定的控制能力,增长速率为,特点:,21,学习交

10、流PPT,增长过程可能伴有分子内重排反应 如 3-甲基-1-丁烯聚合产物有两种结构:,链转移和链终止 离子聚合的增长活性中心带有相同的电荷,不能双分子终止,只能发生链转移终止或单基终止 这一点与自由基聚合显著不同,重排通常是通过电子或个别原子的转移进行的 这种通过增长链碳阳离子发生重排的聚合反应称为异构化聚合,22,学习交流PPT,向单体转移终止 活性链向单体转移,生成的大分子含有不饱和端基,同时再生出活性单体离子对,动力学链不终止,23,学习交流PPT,向单体转移是主要的链终止方式之一 向单体转移常数CM,约为102104,比自由基聚合(104105)大,易发生转移反应 是控制分子量的主要因

11、素,也是阳离子聚合必须低温反应的原因,反应通式为,转移速率为:,特点:,24,学习交流PPT,自发终止或向反离子转移终止 增长链重排导致活性链终止,再生出引发剂共引发剂络合物,反应通式:,25,学习交流PPT,动力学链终止,自发终止速率:,与反离子加成终止,与反离子中的阴离子部分加成终止,26,学习交流PPT,苯醌既是自由基聚合的阻聚剂,又对阳离子聚合起阻聚作用,链终止剂 XA 主要有: 水、醇、酸、酐、酯、醚、胺,加入链转移剂或终止剂(XA)终止 是阳离子聚合的主要终止方式,27,学习交流PPT,聚合体系多为非均相 聚合速率快,数据重现性差 共引发剂、微量杂质对聚合速率影响很大 真正的终止反

12、应不存在,稳态假定难以建立,对特定的反应条件: 苯乙烯SnCl4体系,终止反应是向反离子转移(自发终止) 动力学方程可参照自由基聚合来推导,阳离子聚合机理的特点: 快引发,快增长,易转移,难终止,4 阳离子聚合反应动力学,比自由基聚合研究困难,28,学习交流PPT,建立稳态,增长,终止,引发剂引发生成碳阳离子的反是控制速率反应,动力学方程,引发:,29,学习交流PPT,Rp 对引发剂、共引发剂浓度呈一级反应, 对单体浓度呈二级反应 讨论:,是假定引发过程中引发剂引发单体生成碳阳离子的反应是控制速率反应,因此Ri与单体浓度有关; 若引发剂与共引发剂的反应是慢反应,则 Ri与单体浓度无关,Rp与单

13、体浓度一次方成正比 该动力学方程也适合于与反离子加成终止、向单体转移终止(表达式有变动), 但不宜推广到其它聚合体系 离子聚合无双基终止,不会出现自动加速现象,30,学习交流PPT,聚合度,自发终止为主要终止方式时,向单体链转移为主要终止方式时,综合式,31,学习交流PPT,各基元反应速率常数,速率常数 阳离子聚合 自由基聚合 kp ( l / mols) 7. 6 100 kt 4.9102 (s1) 10 7 ( l / mols) kp / kt 102 kp / kt1/2 102 活性种浓度 C* 103 M 108, Rp阳 Rp自,32,学习交流PPT,5 影响阳离子聚合的因素,

14、溶剂的影响,活性中心离子对的形态 在不同溶剂中, 活性中心离子和反离子有不同形态,大多数聚合活性种处于平衡离子对和自由离子状态 kp(+) :自由离子增长速率常数 kp() :离子对增长速率常 kp(+) kp() 13个数量级,共价键 紧密离子对 被溶剂隔开的离子对 自由离子 平衡离子对,33,学习交流PPT,反离子的影响,溶剂的极性和溶剂化能力的影响 溶剂的极性和溶剂化能力大,自由离子和疏松离子对的比例增加,聚合速率和分子量增大 但要求:不能与中心离子反应;在低温下溶解反应物保持流动性。故采用低极性溶剂,如卤代烷 溶剂的极性常用介电常数 表示。 ,表观kp ,反离子的亲核性 亲核性强,易与

15、碳阳离子结合,使链终止 反离子的体积 体积大,离子对疏松,聚合速率大 体积大,离子对疏松,空间障碍小,Ap大,kp大,34,学习交流PPT,综合活化能为正值时,温度降低,聚合速率减小 综合活化能为负值时,温度降低,聚合速率加快 综合活化能的绝对值较小,温度影响也较小,温度的影响,对聚合速率的影响,综合速率常数,35,学习交流PPT,对聚合度的影响,Et 或 Etr,M 一般总大于Ep,综合活化能为负值,为12.5 29 kJ / mol 因此,聚合度随温度降低而增大 这是阳离子聚合在较低温度下进行聚合的原因.,36,学习交流PPT,5.3 阴离子聚合,具有吸电子取代基的烯类单体原则上可以进行阴

16、离子聚合 能否聚合取决于两种因素,是否具有共轭体系 吸电子基团并具有共轭体系,能够进行阴离子聚合,如AN、MMA、硝基乙烯 吸电子基团并不具有共轭体系,则不能进行阴离子聚合,如VC、VAc 与吸电子能力有关 +e 值越大,吸电子能力越强,易进行阴离子聚合,1.阴离子聚合单体,37,学习交流PPT,2. 引发体系及引发作用,碱金属引发 Li、Na、K外层只有一个价电子,容易转移给单体或中间体,生成阴离子引发聚合,电子直接转移引发,阴离子聚合的活性中心是阴离子,对于,为金属反离子,活性中心可以是自由离子、离子对以及它们的缔合状态,单体自由基阴离子,由亲核试剂(碱类)提供,,38,学习交流PPT,电

17、子间接转移引发 碱金属将电子转移给中间体,形成自由基阴离子,再将活性转移给单体,如萘钠在THF中引发St,双阴离子活性中心,THF,碱金属不溶于溶剂,属非均相体系,利用率低,39,学习交流PPT,(红色),(绿色),(红色),萘钠在极性溶剂中是均相体系,碱金属的利用率高,40,学习交流PPT,金属氨基化合物 是研究得最早的一类引发剂 主要有 NaNH2液氨、KNH2 液氨 体系,有机金属化合物引发,形成自由阴离子,41,学习交流PPT,金属烷基化合物 引发活性与金属的电负性有关 金属的电负性如下,K Na Li Mg Al 电负性 0.8 0.9 1.0 1.21.3 1.5 金属碳键 KC

18、NaC LiC MgC AlC 键的极性 有离子性 极性共价键 极性弱 极性更弱 引发作用 活泼引发剂 常用引发剂 不能直接引发 不能,如丁基锂以离子对方式引发,制成格氏试剂,引发活泼单体,42,学习交流PPT,其它亲核试剂 中性亲核试剂,如R3P、R3N、ROH、H2O等 都有未共用的电子对,在引发和增长过程中生成电荷分离的两性离子,只能引发非常活泼的单体,电荷分离的两性离子,不同引发剂对单体的引发情况见表5-6,43,学习交流PPT,阴离子聚合在适当条件下(体系非常纯净;单体为非极性共轭双烯),可以不发生链终止或链转移反应,活性链直到单体完全耗尽仍可保持聚合活性。 这种单体完全耗尽仍可保持聚合活性的聚合物链阴离子称为“ 活高分子”(Living Polymer) 实验证据 萘钠在THF中引发苯乙烯聚合,碳阴离子增长链为红色,直到单体100转化,红色仍不消失 重新加入单体,仍可继续链增长(放热),红色消退非常缓慢,几天几周,3. 阴离子聚合机理无终止聚合,活性聚合物,44,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论