本科经济计量学第9章(第4版).ppt_第1页
本科经济计量学第9章(第4版).ppt_第2页
本科经济计量学第9章(第4版).ppt_第3页
本科经济计量学第9章(第4版).ppt_第4页
本科经济计量学第9章(第4版).ppt_第5页
已阅读5页,还剩49页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第9章 异方差:如果误差方差不是常数会有什么结果,古典线性回归模型(CLRM)的基本假定中有一条是:随机扰动项是同方差的。如果随机扰动项ui随着i的不同而不同,我们称随机扰动项具有异方差性。 本章主要讨论的是以下问题: (1)异方差有什么性质? (2)异方差的后果是什么? (3)如何检验异方差的存在与否? (4)异方差有那些补救措施?,9.1 异方差的性质 9.2 异方差的后果 9.3 异方差的诊断 9.4 异方差的补救措施 9.5 White异方差校正后的标准误和t统计量 9.6 若干异方差实例 9.7 小结,9.1 异方差的性质,0,X,0,(a) 同方差,(b) 异方差,个人可支配收入,

2、个人可支配收入,异方差:E( ui2 )=i2,返回首页,例9.1 放松管制后纽约股票交易所(NYSE)的经纪人佣金,1975年四五月间,债券交易委员会废除了对于纽约股票交易所股票交易固定佣金率的规定,允许股票经纪人在竞争的基础上索取佣金。 表9-1给出了从1975年4月到1978年12月间经纪人对机构投资者索要的平均每股佣金的季度数据。,表9-1中 X1佣金率,美分/股(0至199股) X2佣金率,美分/股(200至999股) X3佣金率,美分/股(1000至9999股) X4佣金率,美分/股(10000股以上),表9-1:纽约股票交易所佣金率趋势 (单位:美分/股),表9-1的数据有两个特

3、征 1.放松管制以来,佣金率有下降的趋势 2.四类佣金率的均值、方差存在显著差异(见表9-1和下图),佣金率,四类佣金率的方差有显著差异,也就是说,随着股票交易量的增大,佣金率的方差也随之变化,这就是异方差。 如果我们想建立一个回归模型来解释佣金率对股票交易数量( 和其它变量 )的函数,那么与高交易量客户相关的误差项方差将会低于与低交易量客户相关的误差项方差。这对我们建立的回归模型是否有影响、有怎样的影响?该怎样修正?,下面来看例9.2。,例9.2 523个工人的工资等数据,表9-2(见Excel文件)给出了一个纯截面数据的例子。表中收集了523个工人的工资、受教育年限和工龄等数据。 考虑以下

4、模型:,Eviews软件回归结果如下:,(9-3),例9-3,图9-3 回归方程(9-3)的残差平方,图9-4,9.2 异方差的后果,OLS估计量仍是线性无偏的,但不再具有有效性,即不再具有最小方差性。 残差方差 不再是真实 的无偏估计量 根据常用估计OLS估计量方差的公式得到的方差通常是有偏的。 T检验和F检验失效,回到例9.2中得到的回归方程(9-3),由于异方差的存在,该方程的t检验失效。,返回首页,我们来简单看一下为什么会产生这样的后果。 运用普通最小二乘法的原理是要使残差平方和最小,如果在异方差情况下仍然使用普通最小二乘法,每一个ei2都有同样的权重,无论它是来自于一个较大方差的总体

5、还是来自于一个较小方差的总体。这样做是不合适的。 我们应该给那些取自较小方差总体的观察值以更大的权重,而给那些取自较大方差总体的观察值以较小的权重,这能够使我们更为精确地估计总体回归函数。这就是加权最小二乘法(weighted least squares)。,图9-5,9.3 异方差的诊断:如何知道存在异方差问题,对具体问题异方差的检验并非易事,因为我们仅仅知道一个样本,很难知道总体的情况,是否是异方差便不易确定。直接计算得到方差不太可能,但我们可以借助于一些检测工具来检验异方差是否存在。,检验方法有(1)根据问题的性质 (2)残差的图形检验 (3)帕克检验 (Park test) (4)Gl

6、ejser 检验 (Glejser test) (5)White 检验 (6)异方差的其它检验方法,返回首页,9.3.1 根据问题的性质 所考察问题的性质往往提供了是否存在异方差的信息。在涉及不均匀单位的横截面数据中,常存在异方差。在例9.2中便是如此。 我们可以根据问题的性质定性地分析是否存在异方差问题。这是常用方法之一。,9.3.2 残差的图形检验,对回归得到的残差作图进行分析是常用的另一种异方差的检验方法。 为观察异方差的存在与否,我们常常使用的残差图有下列几种: 1. 残差ei对X的散点图; 2. 残差ei对每一个解释变量的散点图; 3. 残差ei对应变量的估计值的散点图; 4. 残差

7、平方ei2对X的散点图; 5. 残差平方ei2对每一个解释变量的散点图; 6. 残差平方ei2对应变量的估计值的散点图;,如果图形中没有可观察到的系统模式,表明数据中可能不存在异方差,否则表明数据中很可能存在异方差。,回到例9.2,现在我们做ei2对X的散点图。,图9-7 与(9.3)式工资的估计值,9.3.3 帕克检验 (Park test),如果存在异方差,异方差中的方差可能与一个或多个解释变量系统相关。为此,我们可作i2对一个或多个解释变量的回归。 例如在双变量模型中,可运行下面的回归方程: lni2=B1+B2lnXi+vi (9-4) 其中 vi 是误差项。这就是帕克检验。由于方差i

8、2是未知的,帕克建议用ei来代替i,运行如下回归方程: lnei2=B1+B2lnXi+vi (9-5) ei2可从原始的回归方程中获得,比如模型(9-3)。,帕克检验的步骤: 作普通最小二乘回归,不考虑异方差问题。 从原始回归方程中得残差ei,求其平方,再取对数。 利用原始模型中的每个解释变量作形如(9-5)的回归。或作ei2对Y的估计值的回归。 检验零假设B2=0,也即不存在异方差。 如果拒绝零假设,则意味着可能存在异方差,但接受零假设并不意味着一定不存在异方差。,在5的显著水平下,估计的斜率系数是统计显著的。 帕克检验的缺陷:在上述回归方程中,误差项 vi 本身可能存在异方差。所以,判断

9、回归方程中是否存在异方差,可能需要更多的检验。 另外:帕克所选择的特殊函数形式只是建议性的,其它的函数形式也许会使我们得到不同的结论。,例9.3 工资回归与帕克检验 我们来解释工资回归方程(9-3)。把从这个回归方程中得到的残差提取出来,估计得到如下结果(ls ss12 c wagef) :,=-10.35965+3.467,se=(11.795) (1.255) (9-6) t =(-0.8783) (2.762) r2=0.0.0144 p =(0.3802) (0.0059),取对数后Eviews软件的回归结果如下:ls log(ss12) c log(wagef),9.3.4 Glej

10、ser 检验 (Glejser test),Glejser 检验实质上与帕克检验很相似。 Glejser 建议作ei的绝对值对X的回归。 Glejser 建议的一些函数形式如下:,(9-8),(9-9),(9-7),每种情形的零假设都是不存在异方差,零假设为B2=0。 如果零假设被拒绝,则表明可能存在异方差。,例9.4 工资回归与Glejser检验,根据回归方程(9-3)的残差估计前面模型,得到的结果如下:,(9-10),(9-11),(9-12),Eviews软件回归: 分别用在编辑框用以下命令即可: ls abs(ss1) c Educ ls abs(ss1) c Educ0.5 ls a

11、bs(ss1) c 1/Educ 结果见Eviews文件。,对回归方程(9-3)的残差估计以上模型,对斜率系数进行显著性检验,从而判断是否存在异方差。 可以看出三个方程的检验结果都是一样的,即拒绝零假设,斜率系数是统计显著的,存在异方差。 对Glejser检验要注意的问题与帕克检验一样,上述方程中的误差项本身可能就存在异方差和系列相关问题,但对于大样本,上述模型能很好地检验异方差问题。,9.3.5 White检验(Whites General Heteroscedasticity Test),对模型 Yi=B1+B2X2i+B3X3i+ui White 检验步骤如下: 用普通最小二乘法估计上面

12、回归方程,得到残差ei。 作辅助回归: ei2=A1+A2X2i+A3X3i+A4X2i2+A5X3i2+A6X2iX3i+vi 求辅助回归方程的R2值。因为此R2值与样本容量(n)的乘积服从 分布,自由度等于该方程中解释变量的个数(不包括截距项)。 计算 统计量,进行假设检验。(零假设:不存在异方差),例9.5 工资回归与怀特的一般异方差检验 继续回到模型(9-3),怀特异方差检验的回归结果如下: (在Eviews中White检验的操作较为简单,只需要在(9-3)的回归输出结果中用ViewResidual Test-White Heteroskedasticity即可。),White检验的一

13、个缺陷是它太一般化了。如果有好几个解释变量的话,则在回归方程中要包括这些变量,变量的平方(或者更高次幂)以及它们的交叉乘积项,这会迅速地降低自由度。 因此,在引入太多变量时,必须谨慎一些。有时,我们可以去掉变量的交叉乘积项。,9.3.6 异方差的其它检验方法 (1)斯皮尔曼(Spearman)秩相关检验 (2)戈德费尔德匡特(Goldfeld-Quandt)检验 (3)巴特莱特(Bartlett)方差同质性检验 (4)匹克(Peak)检验 (5)布鲁尔什培甘(Breusch-Pagan)检验 (6)CUSUMSQ检验,9.4 异方差的补救措施,返回首页,我们在前面已经看到,异方差的存在并不破坏

14、普通最小二乘法估计量的无偏性,但是估计量却不再是有效的,即使对大样本也是如此。缺乏有效性,就使通常假设检验中检验统计量的值不可靠。 因此,如果怀疑存在异方差或者已经检测到了异方差的存在,就应该寻求补救的措施。 补救方式取决于 ( 1 )误差方差的真实值 是已知的 ( 2 )误差方差的真实值 是未知的。,9.4.1 加权最小二乘法(WLS) 误差方差的真实值 已知情形下 对模型 Yi=B1+B2Xi+ui 如果异方差 是已知的,可对原模型两边同除以 ,得到:,令,得到的模型:,满足同方差性。注意,这是一个无截距项的三变量回归模型。,9.4.2 加权最小二乘法(WLS) 误差方差的真实值 未知情形

15、下 情形1:误差方差与Xi成比例:平方根变换(模型两边同除以Xi的平方根) 情形2:误差方差与Xi2成比例:模型两边同除以Xi。,一般的做法:在用常规的OLS法估计之后,我们将回归所得的残差做eiX图,观察图形,根据图形的特点判断误差方差是与解释变量X成比例还是与X的平方成比例,根据判断结果选择处理方法。,误差方差与解释变量X成比例,误差方差与X的平方成比例,ei,ei,X,X,例9.6 变换后的工资回归方程 对工资回归模型(9-3),已知可能存在异方差。作平方根变换,得到如下结果:,(9-24),要想得到原始的(未经变换)工资方程,只需将上式两边同乘以 ,可与最初的回归方程(9-3)进行比较

16、:,(9-25),在确定误差方差的形式后,可以对原模型进行变换,然后对变换后的模型进行估计。 在Eviews软件操作中,需要先确定:a.是否存在异方差;b.异方差的形式;c.如何进行变换,也即确定权系数的形式。 在得知以上信息后,利用Eviews软件具体操作如下:在主菜单中QuickEstimate equation,点击方程设定对话框中的Options键,选择Weighted Ls/TSLS选项,在Weight后面的空格中添入权数序列的名称即可。 上例中,在Weight后面的空格中添入权数序列的名称1/educ0.5即可。 Eviews操作,9.4.3 重新设定模型,除了前面介绍的异方差的补

17、救措施以外,我们还可以通过对模型的重新设定,选择不同的函数形式来达到消除异方差的目的 (与前两种方法也有相通之处)。例如选用对数形式来估计模型: lnYi=B1+B2lnXi+ui (9-28) 在该模型中,异方差的程度被大大缩小了,因为对数变换压缩了测定变量的尺度,从而把两个变量值间的1 0倍差异缩小为2倍差异。例如, 9 0是9的1 0倍,但ln90 (=4.499 8)只有ln9 (=2.197 2)的两倍。这是对数变换的优点。,例9.7 工资对数线性模型 对工资数据,其对数线性模型如下:,(9-29),9.5 White 异方差校正后的标准差和t统计量,前面我们已经说过异方差产生的后果

18、,但White建立了一种考虑到异方差的存在的估计标准差和回归系数的方法,此时我们可以继续使用t检验和F检验,不过这时的OLS估计量是渐近有效的,也即对大样本是有效的。 对工资回归一例,用White异方差校正后的回归函数如下:,返回首页,(在Eviews软件中,在主菜单中QuickEstimate equation,点击方程设定对话框中的Options键,点击Heteroskedasticity即可。),(9-30),9.6 若干异方差实例,例9.8 规模经济或异方差,纽约股票交易所最初是极力反对对经纪佣金率放松管制的。NYSE曾向股票交易委员会提交了一份报告,认为在经纪行业中存在规模经济,因此由垄断决定的固定佣金率是公正的。NYSE所提交的经济计量分析基本上是围绕着以下回归函数来进行的: i =476000+31.348Xi(1.08310-6) Xi2 (9-32) t= (2.98) (40.39) (-6.54) R2=0.934,返回首页,其中,Y总成本,X股票交易的数量。,从模型可看出,总成本和交易量呈正相关,但由于Xi2系数为负,并且是统计显著的,这意味着总成本是以一个递减的速率在增加。因此,NYSE认为在经纪行业中存在规模经济,从而证明了NYSE的垄断地位是正当的。,然而美国司法部反托拉斯

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论