




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Multi-layer Perceptrons,Junying Zhang,contents,structure universal theorem MLP for classification mechanism of MLP for classification nonlinear mapping binary coding of the areas MLP for regression learning algorithm of the MLP back propagation learning algorithm heuristics in learning process,XOR a
2、nd Linear Separability Revisited,Remember that it is not possible to find weights that enable Single Layer Perceptrons to deal with non-linearly separable problems like XOR: However, Multi-Layer Perceptrons (MLPs) are able to cope with non-linearly separable problems. Historically, the problem was t
3、hat there were no learning algorithms for training MLPs. Actually, it is now quite straightforward.,Structure of an MLP,it is composed of several layers neurons within each layer are not connected ith layer is only fully connected to the (i+1)jth layer Signal is transmitted only in a feedforward man
4、ner,Structure of an MLP,Model of each neuron in the net includes A nonlinear activation function the net is nonlinear The function is smooth derivative Generally, sigmoidal function The network contains one or more layers of hidden neurons that are not part of input or output of the net enable the n
5、et to learn complex tasks,Expressive power of an MLP,Questions How many hidden layers are needed? How many units should be in a (the) hidden layer? Answers Komogorovs mapping neural network existence theorem (universal theorem),Komogorovs mapping neural network existence theorem (universal theorem),
6、Any continuous function g(x) defined on the unit hypercube can be represented in the from For properly chosen functions and It is impractical the functions and are not the simple weighted sums passed through nonlinearities favored in neural networks It tells us very little about how to find the nonl
7、inear functions based on data the central problem in network based pattern recognition those functions can be extremely complex; they are not smooth,Komogorovs mapping neural network existence theorem (universal theorem),Any continuous function g(x) can be approximated to arbitrary precision by for
8、properly chosen function f(.) when NH approaches to infinity.,MLP for classification,MLP for regression,Learning scheme,Supervised learning,Two propagation directions - Function Signal: in forward direction - Error signal: in backward direction,Learning in MLP,Objective function where,The desired ou
9、tput of the jth output neuron,The real output of the jth output neuron,Sum squared error function,Steepest descent search method Partial derivative extension,Learning rate parameter,Synaptic weight from ith neuron in k-1th layer to the jth neuron in kth layer of the network,Situation for Situation f
10、or,Back propagation learning algorithm of MLP,Updating equation where which is,Back propagation formula,For sigmoidal function f(.) we have,Speeding the learning process,Learning rate parameter,Momentum constant parameter,Heuristics for making the back-propagation algorithm perform better,Sequential
11、 versus batch update Comparison, sequential model is Computationally faster More suitable for large and highly redundant training data set Makes the search in weight space stochastic in nature Less likely to be trapped in a local minimum More difficult to establish theoretical conditions for converg
12、ence of the algorithm,Stopping criteria,the back-propagation algorithm is considered to have converged gradient vector when the Euclidean norm of the gradient vector reaches a sufficiently small gradient threshold Squired error When the absolute rate of change in the average squared error per epoch
13、is sufficiently small Generalization When generalization performance reaches a peak,Generalization performance,Overfitting downfitting,generalization performance,Cross-validation Leave-one-out,Practical Considerations for Back-Propagation Learning,How Many Hidden Units?,Different Learning Rates for Different Layers?,Overview,We started by revisiting the concept of linear separability and the need for multi-layered neural networks We then saw how the Back-Propa
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城市一年级绘本阅读推广计划
- 妇产科医师产房职责细则
- 电力企业人力资源管控制度与操作流程
- 农电本部绩效管理办法
- 儿童疫苗接种管理办法
- 虚拟现实医疗-洞察及研究
- 出租法院住宅管理办法
- 储备用地看护管理办法
- 光电企业安全管理办法
- 关于密云水库管理办法
- 最简单封阳台安全免责协议书
- (正式版)JBT 3300-2024 平衡重式叉车 整机试验方法
- 咸阳市三原县社工招聘笔试真题
- 夏季高温期间建筑施工安全注意事项
- 甲型流感培训课件
- 双人徒手心肺复苏培训
- 康复医学科常用技术操作规范
- 《金融反欺诈与大数据风控研究报告(2023)》
- 传播学概论课件
- 中小学生天文知识竞赛(129题含答案)
- 机关公文写作培训讲义课件
评论
0/150
提交评论