全等三角形的判定(SAS).ppt_第1页
全等三角形的判定(SAS).ppt_第2页
全等三角形的判定(SAS).ppt_第3页
全等三角形的判定(SAS).ppt_第4页
全等三角形的判定(SAS).ppt_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、,三角形全等的判定,杜亚亚,知识回顾:,判断三角形 全等的方法:,1.定义(重合)法;,2.SSS;,3.ASA;,4.AAS.,如图ABC和 DEF 中, AB=DE=3 , B= E=300 , BC=EF=5 则ABC DEF ?,如图ABC和 DEF 中, AB=DE=3 , B= E=30, BC=EF=5 ABC DEF ?,ABC和 DEF完全重合, 即ABC DEF,三角形全等判定方法,用符号语言表达为:,在ABC与DEF中,AB=DE B=E BC=EF,ABCDEF(SAS),两边和它们的夹角对应相等的两个三角形全等简写成“边角边”或“SAS”,1.如图, AB=EF,AC

2、=DE,问ABCEFD 吗?为什么?,证明:在ABC和EFD 中, AB=_ A=_ _ ABCEFD( ),答:ABCEFD,EF,E,AC=DE,SAS,基础练习(填空题),2.如图AC与BD相交于点O, 已知OA=OC,OB=OD, 求证:AOBCOD,证明:,在AOB和COD中,OA=OC _,OB=OD,AOB=COD,AOBCOD( ),填空,SAS,已知:如图,AB=CB,1=2 ABD 和CBD 全等吗?,A,B,C,D,1,2,变式1:已知:如图,AB=CB,1= 2 求证:(1) AD=CD (2)BD 平分 ADC,A,B,C,D,变式2: 已知:AD=CD,BD平分AD

3、C 求证:A=C,1,2,归纳:证明两条线段相等或两个角相等可以通过证明它们所在的两个三角形全等而得到。,例2 如图,AC=BD,1= 2求证:BC=AD,变式1: 如图,AC=BD,BC=AD 求证:1= 2,变式2: 如图,AC=BD,BC=AD 求证:C=D,变式3: 如图,AC=BD,BC=AD 求证:A=B,巩固练习,1.如图,点E,F在BC上,BE=CF,AB=DC,B=C 求证:A=D,2.如图,已知OA=OB,应填什么条件就得到: AOC BOD(只允许添加一个条件),开放题:,小结:,用符号语言表达为:,在ABC与DEF中,AB=DE B=E BC=EF,ABCDEF(SAS),两边和它们的夹角对应相等的两个三角形全等。简写成“边角边”或“SAS”,到目前为止,我们一共探索出判定三角形全等的四种方法,它们分别是:,1、边边边(SSS),3、角边

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论