垂直平分线课件.ppt_第1页
垂直平分线课件.ppt_第2页
垂直平分线课件.ppt_第3页
垂直平分线课件.ppt_第4页
垂直平分线课件.ppt_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、,13.5.2线段垂直平分线,山西省长治市屯留四中 王卫玲,1、通过自己动手试验,知道线段是轴对称图形。 2、初步掌握线段的垂直平分线的定理及其逆定理。 3、会运用线段垂直平分线的性质定理及逆定理解决有关问题。,学习目标,知识回顾,互逆命题:在两个命题中,如果第一个命题的条件是第二各命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题。把其中一个命题叫原命题,那么另一个命题就叫做它的逆命题。,互逆定理:如果一个定理的逆命题也是定理,那么这两个定理叫做互逆定理,其中的一个定理叫做另一个定理的逆定理,作线段的垂直平分线.,已知:线段AB. 求作:线段AB的垂直平分线.,M,

2、N,作法:,(2)作直线MN. MN即为所求.,(1)分别以点A,B为圆心,以大于 AB的长为半径作弧,两弧交于M,N两点.,我们会发现: 线段AB沿着MN折叠后,左右两部分会完全重合。从而得到结论:,线段是轴对称图形,对称轴就是它的垂直平分线,大胆地猜想:,命题:,线段垂直平分线上的点到线段两端的距离相等,A,B,如图,MNAB,垂足为点C,AC=BC,点P是直线MN上的任意一点.,已知:,PA=PB,求证:,证明:,证明: MNAB(已知) PCA=PCB(垂直的定义) 在PCA和PCB中, PCA PCB(SAS),PA=PB(全等三角形的对应边相等),A,C,M,N,P,当点P与点C重

3、合时, PA与PB还相等吗?,此时,PA=CA,PB=CB 已知AC=CB PA=PB,B,线段垂直平分线上的点到线段两端的距离相等.,线段垂直平分线的性质定理:,几何语言表达: MN AB于C,且AC=BC,点P在MN上 PA=PB,命题:线段垂直平分线上的点到线段两 端的距离相等,逆命题是:,到线段两端距离相等的点在线段的垂直平分线上,已知:,如图,PA=PB,求证:,点P在线段AB的垂直 平分线上.,过点P作PCAB,垂足为点C.,在Rt PCA和Rt PCB中 PA=PB, PC=PC Rt PCA Rt PCB(H.L.) ,PC是线段AB的垂直平分线. 即点P在线段AB的垂直 平分

4、线上.,证明:,到线段两端距离相等的点在线段的垂直平分线上。,证明:,故PCA=PCB=90.,证明:过点P作P的角平分线,交AB于点C, 则有 ,APC= BPC 在 PCA和 PCB中 PA=PB APC= BPC PC=PC PCA PCB(S.A.S) ACP=BCP=90。即PCAB PC是线段AB的垂直平分线 即点P是线段AB 垂直平分线上的点,C,到线段两端距离相等的点在线段的垂直平分线上.,线段垂直平分线的性质定理的逆定理:,几何语言表达: PA=PB 点P在线段AB的垂直平分线上,线段的垂直平分线可以看作是:,和线段两端距离相等的所有点的集合.,如图,已知点A、B和直线l,在直线 l 上求作一点P,使PA=PB.,l,图中点P为所求作的点,练习,如图,在ABC中,已知点D在BC上,且BD+AD=BC.求证:点D在AC的垂直平分线上。,证明: BD+AD=BC=BD+DC AD=DC 点D在AC的垂直平分线上 (线段垂直平分线的判定定理),问题:如图,A、B、C三个村庄合建一所学校,要求校址P点距离三个村庄都相等.请你帮助确定校址.,点P为校址,2、线段垂直平分线性质定理:线段垂直平分线上的点到这条线段 两端的距离相等.,逆定理:到一条线段两个端点距离相等的点, 在这条线段的垂直平分线上.,3、线段的垂直平分线可以看作是和线段两个端点距离

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论